# Exact Procedures

## Ordinary Poisson Binomial Distribution

### Direct Convolution

The Direct Convolution (DC) approach is requested with method = "Convolve".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "Convolve")
#>  [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26
#>  [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19
#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13
#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10
#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17
#> [61] 9.411166e-19 6.727527e-21
ppbinom(NULL, pp, wt, "Convolve")
#>  [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26
#>  [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19
#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13
#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

### Divide & Conquer FFT Tree Convolution

The Divide & Conquer FFT Tree Convolution (DC-FFT) approach is requested with method = "DivideFFT".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "DivideFFT")
#>  [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26
#>  [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19
#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13
#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10
#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17
#> [61] 9.411166e-19 6.727527e-21
ppbinom(NULL, pp, wt, "DivideFFT")
#>  [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26
#>  [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19
#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13
#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

By design, as proposed by Biscarri, Zhao & Brunner (2018), its results are identical to the DC procedure, if $$n \leq 750$$. Thus, differences can be observed for larger $$n > 750$$:

set.seed(1)
pp1 <- runif(751)
pp2 <- pp1[1:750]

sum(abs(dpbinom(NULL, pp2, method = "DivideFFT") - dpbinom(NULL, pp2, method = "Convolve")))
#> [1] 0
sum(abs(dpbinom(NULL, pp1, method = "DivideFFT") - dpbinom(NULL, pp1, method = "Convolve")))
#> [1] 0

The reason is that the DC-FFT method splits the input probs vector into as equally sized parts as possible and computes their distributions separately with the DC approach. The results of the portions are then convoluted by means of the Fast Fourier Transformation. As proposed by Biscarri, Zhao & Brunner (2018), no splitting is done for $$n \leq 750$$. In addition, the DC-FFT procedure does not produce probabilities $$\leq 5.55e\text{-}17$$, i.e. smaller values are rounded off to 0, if $$n > 750$$, whereas the smallest possible result of the DC algorithm is $$\sim 1e\text{-}323$$. This is most likely caused by the used FFTW3 library.

set.seed(1)
pp1 <- runif(751)

d1 <- dpbinom(NULL, pp1, method = "DivideFFT")
d2 <- dpbinom(NULL, pp1, method = "Convolve")

min(d1[d1 > 0])
#> [1] 1.635357e-321
min(d2[d2 > 0])
#> [1] 1.635357e-321

### Discrete Fourier Transformation of the Characteristic Function

The Discrete Fourier Transformation of the Characteristic Function (DFT-CF) approach is requested with method = "Characteristic".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "Characteristic")
#>  [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [11] 0.000000e+00 2.238353e-16 3.549132e-15 4.829828e-14 5.804377e-13
#> [16] 6.158818e-12 5.784702e-11 4.822438e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110923e-10
#> [56] 2.392079e-11 1.468354e-12 6.994931e-14 2.513558e-15 0.000000e+00
#> [61] 0.000000e+00 0.000000e+00
ppbinom(NULL, pp, wt, "Characteristic")
#>  [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [11] 0.000000e+00 2.238353e-16 3.772968e-15 5.207125e-14 6.325089e-13
#> [16] 6.791327e-12 6.463834e-11 5.468822e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

As can be seen, the DFT-CF procedure does not produce probabilities $$\leq 2.22e\text{-}16$$, i.e. smaller values are rounded off to 0, most likely due to the used FFTW3 library.

### Recursive Formula

The Recursive Formula (RF) approach is requested with method = "Recursive".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "Recursive")
#>  [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26
#>  [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19
#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13
#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10
#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17
#> [61] 9.411166e-19 6.727527e-21
ppbinom(NULL, pp, wt, "Recursive")
#>  [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26
#>  [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19
#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13
#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

Obviously, the RF procedure does produce probabilities $$\leq 5.55e\text{-}17$$, because it does not rely on the FFTW3 library. Furthermore, it yields the same results as the DC method.

set.seed(1)
pp <- runif(1000)
wt <- sample(1:10, 1000, TRUE)

sum(abs(dpbinom(NULL, pp, wt, "Convolve") - dpbinom(NULL, pp, wt, "Recursive")))
#> [1] 0

### Processing Speed Comparisons

To assess the performance of the exact procedures, we use the microbenchmark package. Each algorithm has to calculate the PMF repeatedly based on random probability vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).

library(microbenchmark)
set.seed(1)

f1 <- function() dpbinom(NULL, runif(6000), method = "DivideFFT")
f2 <- function() dpbinom(NULL, runif(6000), method = "Convolve")
f3 <- function() dpbinom(NULL, runif(6000), method = "Recursive")
f4 <- function() dpbinom(NULL, runif(6000), method = "Characteristic")

microbenchmark(f1(), f2(), f3(), f4(), times = 51)
#> Unit: milliseconds
#>  expr     min      lq      mean  median       uq     max neval
#>  f1()  6.0839  6.1614  6.603937  6.2259  6.36975 11.8834    51
#>  f2() 11.9620 12.0766 12.551157 12.1504 12.25110 28.2470    51
#>  f3() 24.3126 24.3727 24.647749 24.4297 24.55060 29.1372    51
#>  f4() 27.2692 27.3447 27.442700 27.4125 27.48850 28.3030    51

Clearly, the DC-FFT procedure is the fastest, followed by DC, RF and DFT-CF methods.

## Generalized Poisson Binomial Distribution

### Generalized Direct Convolution

The Generalized Direct Convolution (G-DC) approach is requested with method = "Convolve".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)

dgpbinom(NULL, pp, va, vb, wt, "Convolve")
#>   [1] 1.140600e-31 5.349930e-30 1.164698e-28 1.572037e-27 1.491024e-26
#>   [6] 1.077204e-25 6.336147e-25 3.215011e-24 1.466295e-23 6.127671e-23
#>  [11] 2.363402e-22 8.484857e-22 2.866109e-21 9.171228e-21 2.788507e-20
#>  [16] 8.091940e-20 2.254155e-19 6.051395e-19 1.570129e-18 3.953458e-18
#>  [21] 9.696098e-18 2.321913e-17 5.442392e-17 1.251302e-16 2.824507e-16
#>  [26] 6.264454e-16 1.366745e-15 2.934598e-15 6.203639e-15 1.292697e-14
#>  [31] 2.657759e-14 5.394727e-14 1.081983e-13 2.144873e-13 4.201625e-13
#>  [36] 8.135609e-13 1.557745e-12 2.949821e-12 5.527695e-12 1.025815e-11
#>  [41] 1.885777e-11 3.434641e-11 6.196981e-11 1.106787e-10 1.956340e-10
#>  [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753751e-09 2.972596e-09
#>  [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08
#>  [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07
#>  [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06
#>  [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05
#>  [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05
#>  [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04
#>  [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03
#>  [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03
#>  [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03
#>  [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02
#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02
#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02
#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02
#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02
#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02
#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02
#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02
#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03
#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03
#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03
#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04
#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04
#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05
#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05
#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06
#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07
#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08
#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09
#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11
#> [196] 1.676154e-11 7.585978e-12 3.326429e-12 1.407527e-12 5.717370e-13
#> [201] 2.216349e-13 8.149241e-14 2.824954e-14 9.179165e-15 2.780017e-15
#> [206] 7.803525e-16 2.018046e-16 4.775552e-17 1.025798e-17 1.979767e-18
#> [211] 3.386554e-19 5.038594e-20 6.336865e-21 6.424747e-22 4.821385e-23
#> [216] 2.108301e-24
pgpbinom(NULL, pp, va, vb, wt, "Convolve")
#>   [1] 1.140600e-31 5.463990e-30 1.219337e-28 1.693971e-27 1.660421e-26
#>   [6] 1.243246e-25 7.579393e-25 3.972950e-24 1.863590e-23 7.991261e-23
#>  [11] 3.162528e-22 1.164739e-21 4.030847e-21 1.320208e-20 4.108715e-20
#>  [16] 1.220065e-19 3.474220e-19 9.525615e-19 2.522691e-18 6.476149e-18
#>  [21] 1.617225e-17 3.939138e-17 9.381530e-17 2.189455e-16 5.013962e-16
#>  [26] 1.127842e-15 2.494586e-15 5.429184e-15 1.163282e-14 2.455979e-14
#>  [31] 5.113739e-14 1.050847e-13 2.132829e-13 4.277703e-13 8.479327e-13
#>  [36] 1.661494e-12 3.219239e-12 6.169059e-12 1.169675e-11 2.195491e-11
#>  [41] 4.081268e-11 7.515909e-11 1.371289e-10 2.478076e-10 4.434415e-10
#>  [46] 7.859810e-10 1.380789e-09 2.406013e-09 4.159763e-09 7.132360e-09
#>  [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08
#>  [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07
#>  [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06
#>  [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05
#>  [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04
#>  [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03
#>  [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03
#>  [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02
#>  [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02
#>  [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01
#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01
#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01
#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01
#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01
#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01
#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01
#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01
#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01
#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01
#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01
#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01
#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01
#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01
#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01
#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01
#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01
#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00
#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [216] 1.000000e+00

### Generalized Divide & Conquer FFT Tree Convolution

The Generalized Divide & Conquer FFT Tree Convolution (G-DC-FFT) approach is requested with method = "DivideFFT".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)

dgpbinom(NULL, pp, va, vb, wt, "DivideFFT")
#>   [1] 1.140600e-31 5.349930e-30 1.164698e-28 1.572037e-27 1.491024e-26
#>   [6] 1.077204e-25 6.336147e-25 3.215011e-24 1.466295e-23 6.127671e-23
#>  [11] 2.363402e-22 8.484857e-22 2.866109e-21 9.171228e-21 2.788507e-20
#>  [16] 8.091940e-20 2.254155e-19 6.051395e-19 1.570129e-18 3.953458e-18
#>  [21] 9.696098e-18 2.321913e-17 5.442392e-17 1.251302e-16 2.824507e-16
#>  [26] 6.264454e-16 1.366745e-15 2.934598e-15 6.203639e-15 1.292697e-14
#>  [31] 2.657759e-14 5.394727e-14 1.081983e-13 2.144873e-13 4.201625e-13
#>  [36] 8.135609e-13 1.557745e-12 2.949821e-12 5.527695e-12 1.025815e-11
#>  [41] 1.885777e-11 3.434641e-11 6.196981e-11 1.106787e-10 1.956340e-10
#>  [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753751e-09 2.972596e-09
#>  [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08
#>  [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07
#>  [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06
#>  [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05
#>  [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05
#>  [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04
#>  [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03
#>  [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03
#>  [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03
#>  [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02
#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02
#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02
#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02
#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02
#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02
#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02
#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02
#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03
#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03
#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03
#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04
#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04
#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05
#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05
#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06
#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07
#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08
#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09
#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11
#> [196] 1.676154e-11 7.585978e-12 3.326429e-12 1.407527e-12 5.717370e-13
#> [201] 2.216349e-13 8.149241e-14 2.824954e-14 9.179165e-15 2.780017e-15
#> [206] 7.803525e-16 2.018046e-16 4.775552e-17 1.025798e-17 1.979767e-18
#> [211] 3.386554e-19 5.038594e-20 6.336865e-21 6.424747e-22 4.821385e-23
#> [216] 2.108301e-24
pgpbinom(NULL, pp, va, vb, wt, "DivideFFT")
#>   [1] 1.140600e-31 5.463990e-30 1.219337e-28 1.693971e-27 1.660421e-26
#>   [6] 1.243246e-25 7.579393e-25 3.972950e-24 1.863590e-23 7.991261e-23
#>  [11] 3.162528e-22 1.164739e-21 4.030847e-21 1.320208e-20 4.108715e-20
#>  [16] 1.220065e-19 3.474220e-19 9.525615e-19 2.522691e-18 6.476149e-18
#>  [21] 1.617225e-17 3.939138e-17 9.381530e-17 2.189455e-16 5.013962e-16
#>  [26] 1.127842e-15 2.494586e-15 5.429184e-15 1.163282e-14 2.455979e-14
#>  [31] 5.113739e-14 1.050847e-13 2.132829e-13 4.277703e-13 8.479327e-13
#>  [36] 1.661494e-12 3.219239e-12 6.169059e-12 1.169675e-11 2.195491e-11
#>  [41] 4.081268e-11 7.515909e-11 1.371289e-10 2.478076e-10 4.434415e-10
#>  [46] 7.859810e-10 1.380789e-09 2.406013e-09 4.159763e-09 7.132360e-09
#>  [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08
#>  [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07
#>  [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06
#>  [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05
#>  [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04
#>  [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03
#>  [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03
#>  [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02
#>  [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02
#>  [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01
#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01
#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01
#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01
#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01
#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01
#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01
#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01
#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01
#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01
#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01
#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01
#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01
#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01
#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01
#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01
#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01
#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00
#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [216] 1.000000e+00

By design, similar to the ordinary DC-FFT algorithm by Biscarri, Zhao & Brunner (2018), its results are identical to the G-DC procedure, if $$n$$ and the number of possible observed values is small. Thus, differences can be observed for larger numbers:

set.seed(1)
pp1 <- runif(250)
va1 <- sample(0:50, 250, TRUE)
vb1 <- sample(0:50, 250, TRUE)
pp2 <- pp1[1:248]
va2 <- va1[1:248]
vb2 <- vb1[1:248]

sum(abs(dgpbinom(NULL, pp1, va1, vb1, method = "DivideFFT")
- dgpbinom(NULL, pp1, va1, vb1, method = "Convolve")))
#> [1] 0

sum(abs(dgpbinom(NULL, pp2, va2, vb2, method = "DivideFFT")
- dgpbinom(NULL, pp2, va2, vb2, method = "Convolve")))
#> [1] 0

The reason is that the G-DC-FFT method splits the input probs, val_p and val_q vectors into parts such that the numbers of possible observations of all parts are as equally sized as possible. Their distributions are then computed separately with the G-DC approach. The results of the portions are then convoluted by means of the Fast Fourier Transformation. For small $$n$$ and small distribution sizes, no splitting is needed. In addition, the G-DC-FFT procedure, just like the DC-FFT method, does not produce probabilities $$\leq 5.55e\text{-}17$$, i.e. smaller values are rounded off to $$0$$, if the total number of possible observations is smaller than $$750$$, whereas the smallest possible result of the DC algorithm is $$\sim 1e\text{-}323$$. This is most likely caused by the used FFTW3 library.

d1 <- dgpbinom(NULL, pp1, va1, vb1, method = "DivideFFT")
d2 <- dgpbinom(NULL, pp1, va1, vb1, method = "Convolve")

min(d1[d1 > 0])
#> [1] 2.839368e-99
min(d2[d2 > 0])
#> [1] 2.839368e-99

### Generalized Discrete Fourier Transformation of the Characteristic Function

The Generalized Discrete Fourier Transformation of the Characteristic Function (G-DFT-CF) approach is requested with method = "Characteristic".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)

dgpbinom(NULL, pp, va, vb, wt, "Characteristic")
#>   [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>   [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [11] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [16] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.837237e-16
#>  [26] 6.250144e-16 1.365163e-15 2.931811e-15 6.199773e-15 1.292382e-14
#>  [31] 2.657288e-14 5.394142e-14 1.081912e-13 2.144812e-13 4.201536e-13
#>  [36] 8.135511e-13 1.557734e-12 2.949810e-12 5.527683e-12 1.025814e-11
#>  [41] 1.885776e-11 3.434640e-11 6.196980e-11 1.106787e-10 1.956340e-10
#>  [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753750e-09 2.972596e-09
#>  [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08
#>  [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07
#>  [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06
#>  [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05
#>  [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05
#>  [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04
#>  [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03
#>  [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03
#>  [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03
#>  [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02
#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02
#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02
#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02
#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02
#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02
#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02
#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02
#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03
#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03
#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03
#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04
#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04
#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05
#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05
#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06
#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07
#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08
#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09
#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11
#> [196] 1.676155e-11 7.585978e-12 3.326431e-12 1.407528e-12 5.717366e-13
#> [201] 2.216380e-13 8.149294e-14 2.825106e-14 9.182984e-15 2.782753e-15
#> [206] 7.822960e-16 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [211] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [216] 0.000000e+00
pgpbinom(NULL, pp, va, vb, wt, "Characteristic")
#>   [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>   [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [11] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [16] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.837237e-16
#>  [26] 9.087381e-16 2.273901e-15 5.205712e-15 1.140549e-14 2.432930e-14
#>  [31] 5.090218e-14 1.048436e-13 2.130348e-13 4.275160e-13 8.476697e-13
#>  [36] 1.661221e-12 3.218955e-12 6.168765e-12 1.169645e-11 2.195459e-11
#>  [41] 4.081235e-11 7.515874e-11 1.371285e-10 2.478072e-10 4.434412e-10
#>  [46] 7.859806e-10 1.380788e-09 2.406013e-09 4.159763e-09 7.132359e-09
#>  [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08
#>  [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07
#>  [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06
#>  [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05
#>  [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04
#>  [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03
#>  [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03
#>  [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02
#>  [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02
#>  [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01
#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01
#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01
#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01
#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01
#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01
#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01
#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01
#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01
#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01
#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01
#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01
#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01
#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01
#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01
#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01
#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01
#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00
#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [216] 1.000000e+00

As can be seen, the G-DFT-CF procedure does not produce probabilities $$\leq 2.2e\text{-}16$$, i.e. smaller values are rounded off to 0, most likely due to the used FFTW3 library.

### Processing Speed Comparisons

To assess the performance of the exact procedures, we use the microbenchmark package. Each algorithm has to calculate the PMF repeatedly based on random probability and value vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).

library(microbenchmark)
n <- 2500
set.seed(1)
va <- sample(1:50, n, TRUE)
vb <- sample(1:50, n, TRUE)

f1 <- function() dgpbinom(NULL, runif(n), va, vb, method = "DivideFFT")
f2 <- function() dgpbinom(NULL, runif(n), va, vb, method = "Convolve")
f3 <- function() dgpbinom(NULL, runif(n), va, vb, method = "Characteristic")

microbenchmark(f1(), f2(), f3(), times = 51)
#> Unit: milliseconds
#>  expr      min        lq      mean   median       uq      max neval
#>  f1()  37.7105  39.22330  40.51796  39.5162  39.9696  67.0926    51
#>  f2()  44.6782  45.41475  46.46469  46.1763  46.5835  53.0914    51
#>  f3() 122.4643 128.14945 129.74992 129.8714 131.0883 140.1369    51

Clearly, the G-DC-FFT procedure is the fastest one. It outperforms both the G-DC and G-DFT-CF approaches. The latter one needs a lot more time than the others. Generally, the computational speed advantage of the G-DC-FFT procedure increases with larger $$n$$ (and $$m$$).