
Package ‘RFmarkerDetector’
February 29, 2016

Type Package

Title Multivariate Analysis of Metabolomics Data using Random Forests

Version 1.0.1

Date 2016-02-28

Author Piergiorgio Palla, Giuliano Armano

Maintainer Piergiorgio Palla <piergiorgio.palla@diee.unica.it>

Description A collection of tools for multivariate analysis of metabolomics
data, which includes several preprocessing methods (normalization, scaling)
and various exploration and data visualization techniques (Principal
Components Analysis and Multi Dimensional Scaling). The core of the package
is the Random Forest algorithm used for the construction, optimization and
validation of classification models with the aim of identifying potentially
relevant biomarkers.

License GPL-3

LazyData true

Imports randomForest, ggplot2, UsingR, WilcoxCV, ROCR, methods

Depends AUCRF

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-02-29 01:29:57

R topics documented:
aucMCV . 2
autoscale . 3
cachexiaData . 4
combinatorialRFMCCV . 5
forestPerformance . 6
getAvgAUC . 6
getBestRFModel . 7

1

2 aucMCV

lqvarFilter . 8
mccv . 9
mds . 10
meanCenter . 11
optimizeMTRY . 12
paretoscale . 13
pca . 14
plot.mccv . 15
plot.mds . 16
plot.pca.loadings . 16
plot.pca.scores . 17
plotAUCvsCombinations . 18
plotOOBvsMTRY . 19
plotVarFreq . 19
rfMCCV . 20
rfMCCVPerf . 21
rsd . 22
rsdFilter . 23
screeplot . 24
simpleData . 24
tuneMTRY . 25
tuneNTREE . 26

Index 27

aucMCV AUC multiple cross-validation

Description

This function implements the AUCRF algorithm for identifying the variables (metabolites) most
relevant for the classification task

Usage

aucMCV(data, seed = 1234, ref_level = levels(data[, 2])[1],
auc_rank = "MDG", auc_ntree = 500, auc_nfolds = 5, auc_pdel = 0.2,
auc_colour = "grey", auc_iterations = 5)

Arguments

data a n x p dataframe used to execute the AUCRF algorithm and perform a repetead
CV of the AUCRF process. The dependent variable must be a binary variable
defined as a factor and codified as 0 for negatives (e.g controls) and 1 for
positivies (e.g. cases)

seed a numeric value to set the seed of R’s random number generator

ref_level the class assumed as reference for the binary classification

autoscale 3

auc_rank the importance measure provided by randomForest for ranking the variables.
There are two options: MDG (default) and MDA

auc_ntree the number of tree of each random forest model used

auc_nfolds the number of folds in cross validation. By default a 5-fold cross validation is
performed

auc_pdel the fraction of variables to be removed at each step. If aucpdel = 0, it will be
removed only one variable at each step

auc_colour the color chosen

auc_iterations a numeric that represents the number of cross validation repetitions

Details

Exploting the AUCRF algorithm, the fuction allows to identify the best performing ’parsimonious’
model in terms of OOB-AUC and the most relevant variables (metabolites) involved in the predic-
tion task.

Author(s)

Piergiorgio Palla

References

Calle ML, Urrea V, Boulesteix A-L, Malats N (2011) ’AUC-RF: A new strategy for genomic pro-
filing with Random Forest’. Human Heredity

Examples

data(cachexiaData)
aucMCV(cachexiaData, ref_level = 'control')

autoscale Unit variance scaling method performed on the columns of the data
(i.e. metabolite concentrations measured by 1H NMR or binned 1H
NMR spectra)

Description

The function provides a data pretreatment approach called Autoscaling (also known as unit variance
scaling). The data for each variable (metabolite) is mean centered and then divided by the standard
deviation of the variable. This way each variable will have zero mean and unit standard deviation.

Usage

autoscale(data, exclude = T)

4 cachexiaData

Arguments

data a n x p data frame with n observations and p columns. While the first two
columns usually represent the names of the samples and the class labels related
to each sample respectively, the remaining columns represent metabolite con-
centrations measured by 1H NMR or bins of 1H NMR spectra

exclude a boolean variable which stores a simple True/ False setting. If set to True the
scaling method will exclude the first two columns.

Value

a scaled version of the input matrix

Author(s)

Piegiorgio Palla

Examples

load the included example dataset
data(cachexiaData)
call autoscale with the parameter exclude set to TRUE (default)
in order to exclude the first two columns of the dataset from scaling
data.scaled <- autoscale(cachexiaData, exclude = TRUE)

cachexiaData Metabolite concentrations

Description

A dataset containing the metabolite concentrations of 77 urine samples from cancer patients mea-
sured by 1H NMR

Usage

data(cachexiaData)

Format

A data frame with 77 rows and 65 variables:

Source

http://dx.doi.org/10.1007/s11306-010-0232-9

http://dx.doi.org/10.1007/s11306-010-0232-9

combinatorialRFMCCV 5

combinatorialRFMCCV Combinatorial Monte Carlo CV

Description

This function performs a Monte Carlo CV for each of the Random Forest model grown considering
all the k-combinations of the n input variables of the original dataset, with k ranging from 2 to n.
It allows to get the most performing Random Forest model in terms of the AUC of the ROC curve
and to obtain the most relevant input variables (metabolites or bins) associated with it.

Usage

combinatorialRFMCCV(dataset, parameters = list(ntrees = 500, nsplits = 100,
test_prop = 1/3, kmax = 5))

Arguments

dataset a n x p dataframe used to build the models. The first two columns must represent
respectively the sample names and the class labels related to each sample

parameters a list including the following parameters:

• ntree the number of trees of each Random Forest model
• nsplits the number of random splittings of the original dataset into training

and test data sets
• test_prop the percentage (expressed as a real number) of the observations

of the original dataset
• kmax the maximum number of inputs to combine.

Details

The function computes all the k-combinations of the n input variables, with k ranging from 2 to
n. Each combination corresponds to a dataset on which the function will grow a Random Forest
model, performing a Monte Carlo CV. Then it will provide the best performing model in terms of
the AUC of the ROC curve and the most relevant variables associated with it.

Value

a list containing the most performing Random Forest model #’ @examples ## data(cachexiaData)
params <- list(ntrees = 100, nsplits = 10, test_prop = 1/3) ## res <- combinatorialRFMCCV(dataset
= cachexiaData[,1:10], parameters = params) ## This task may take a long time depending on the
dimension of the dataset and on the parameters provided

Author(s)

Piergiorgio Palla

6 getAvgAUC

forestPerformance Characterizing the performance of a Random Forest model

Description

This function provides the accuracy and the recall of a Random Forest model

Usage

forestPerformance(cm)

Arguments

cm the confusion matrix of a validated Random Forest model

Value

a vector contining the accuracy, the recall and the same confusion matrix of the Random Forest
model

Author(s)

Piergiorgio Palla

getAvgAUC Computing the average AUC

Description

This function computes the average AUC of the ROC curves obtained from a cross-validation pro-
cedure

Usage

getAvgAUC(predictions, labels)

Arguments

predictions a vector, matrix, list, or data frame containing the predictions.

labels a vector, matrix, list, or data frame containing the true class labels. It must have
the same dimensions as predictions

Value

the average AUC value

getBestRFModel 7

Author(s)

Piergiorgio Palla

Examples

load a simple dataset with the vectors of the predictions and the labels resulting from a CV
data(simpleData)
avg_auc <- getAvgAUC(simpleData$predictions, simpleData$labels)

getBestRFModel Extracting the best performing Random Forest model

Description

This function allows to find the best performing Random Forest model starting from a k-combination
of its input variables

Usage

getBestRFModel(combinations, data, params)

Arguments

combinations a k x n matrix in which n is the number of combinations of the input variables
and k is the size of each combination

data a n x p data frame of n observations and p-2 predictors. The first two columns
must represent the sample names and the classes associates to each sample

params a list of params useful to perform a Monte Carlo Cross validation. It should
contain the following data:

• ntrees the number of trees of each random forest model
• nsplits the number of random splittings of the original dataset into training

and test data sets
• test_prop the percentage (expressed as a real number) of the observations

of the original dataset to be included in each test set
• ref_level the assumed reference class label

Details

The k-combinations of the input variables is represented as a k x n matrix in which k is the size
of each combination and n is the number of combinations of the input variables of the original
dataset. Each column of the combinations matrix contains the indexes of the input variables from
the original dataset The getBestRFModel extracts a datAset from the original one considering the
indexes in these columns. Then it will build a Random Forest model performing a Monte Carlo
CV for each dataset. The models cross-validated will be compared considering the AUC of their
averaged ROC curve. The function will return the best models, the maximum value of AUC and the
most relevant input variables associated

8 lqvarFilter

Value

a list of the following elements:

• best_model_set the set of best performing Random Forest models in terms of AUC

• max_auc the maximum value of AUC corresponding to those models

• biomarker_set the set of metabolites (or bins) corresponding to the best performing Random
Forest

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
dataset <- cachexiaData[, 1:15]
indexes <- 3:15
combinations <- combn(x = indexes, m = 5) # a 5 x n_of_combinations matrix
test_params = list(ntrees= 500, nsplits = 100, test_prop = 1/3)
res <- getBestRFModel(combinations, dataset, test_params)

lqvarFilter Filtering ’low quality’ variables from the original dataset

Description

This function takes the original dataset and filters those variables with a definite (usually relevant)
percentage of zero-values

Usage

lqvarFilter(data, threshold = 0.5, exclude = T)

Arguments

data a n x p data frame with n observations and p columns. While the first two
columns usually represent the names of the samples and the class labels related
to each sample respectively, the remaining columns represent metabolite con-
centrations measured by 1H NMR or bins of 1H NMR spectra

threshold the percentage of zero values of a variable above which it will be eliminated
from the dataset (default: 0.50)

exclude a logical variable which stores a simple True / False setting. If set to True the
filtering method will exclude the first two columns.

Value

a list containing the filtered dataset, a vector with the names of the varables excluded and a vector
with the indexes of the variables eliminated

mccv 9

Author(s)

Piergiorgio Palla

Examples

load the included example dataset
data(cachexiaData)
call lqvarFilter with the parameter exclude set to TRUE (default)
in order to exclude the first two columns of the dataset from scaling
res <- lqvarFilter(cachexiaData, threshold = 0.4, exclude = TRUE)
data.filtered <- res$filtered_dataset

mccv mccv class

Description

A constructor function for the S3 class mccv; the mccv class encapsulates information such as
predictions and abels needed to plot roc curve(s) for a cross-validated random forest model

Usage

mccv(predictions, labels, models)

Arguments

predictions a n x p dataframe of the predictions collected during the cross-validation process
of the random forest, with n is equal to the number of samples in each test set
and p is equal to the number of test sets

labels a n x p dataframe of the labels of the samples included in each test set obtained
splitting the original dataset during the cross-validation process of the model

models a list of p random forest models tested in the cross-validation process

Value

an object of class mccv

Author(s)

Piergiorgio Palla

Examples

load a simple dataset with the vectors of the predictions and the labels resulting from a CV
data(simpleData)
mccv_obj <- mccv(simpleData$predictions, simpleData$labels, models = NULL)

10 mds

mds mds class

Description

A constructor function for the S3 class mds; the mds class encapsulates useful information for
generating MDS plots

Usage

mds(dataset, opt = list(ntree = 1000, mtry = round(sqrt(ncol(dataset) - 2)),
seed = 1234))

Arguments

dataset a n x p dataframe representing the dataset to be used to train the model. The first
two columns must represent respectively the samples names and the class labels
related to each sample

opt a list of optional parameters useful to train the random forest. It may include the
number of trees (ntree), the parameter mtry and the seed

Value

an object of class mds including the following attributes:

• model an object of class random forest containing the proximity matrix

• classes a factor with the classes associated with each sample, used to train the model

• sample_names the vector of the names of the samples

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
params = list(ntree = 1000, mtry = round(sqrt(ncol(cachexiaData) -2)), seed = 1234)
mds_obj <- mds(cachexiaData, opt = params)

meanCenter 11

meanCenter Mean centering performed on the columns of the data (i.e. metabolite
concentrations measured by 1H NMR or binned 1H NMR spectra)

Description

The function allows to have each predictor (column) centered on zero. The average value of each
predictor is substracted to each value in the column.

Usage

meanCenter(data, exclude = T)

Arguments

data a n x p data frame with n observations and p columns. While the first two
columns usually represent the names of the samples and the class labels related
to each sample respectively, the remaining columns represent metabolite con-
centrations measured by 1H NMR or bins of 1H NMR spectra

exclude a logical variable which stores a simple True / False setting. If set to True the
scaling method will exclude the first two columns.

Value

a mean centered version of the input matrix

Author(s)

Piergiorgio Palla

Examples

load the included example dataset
data(cachexiaData)
call meanCenter with the parameter exclude set to TRUE (default)
in order to exclude the first two columns of the dataset from scaling
data.scaled <- meanCenter(cachexiaData, exclude = TRUE)

12 optimizeMTRY

optimizeMTRY Mtry Optimization

Description

This function provides a ’population’ estimate of the average OOB error computed for different
mtry values, starting from a sample of N models. These values will be used to compute the mtry
associated to the minimum averaged OOB error, that is the optimal parameter we are looking for.

Usage

optimizeMTRY(oob_matrix)

Arguments

oob_matrix a n x p of n OOB error values (one for each iteration) and p columns (one for
each mtry value tested) Each value of a column is the oob error of a model
growth with a particular mtry. Typically for each mtry, we will have N different
models (N > 30), a sample large enough to provide an estimate of the average
OOB error for the corresponding population of models.

Value

a list of two elements:

• mean_matrix a 1 x p matrix which contains the mean of each OOB errors sample (resulting
from the training of N different Random Forest models growth with N different mtry values)

• ci_matrix a 2 x p matrix in which each column represents the 95% confidence interval of the
mean of the population of the OOB errors for each mtry value

• sd_matrix a 1 x p matrix which contains the standard deviatiaon of each OOB error sample
resulting from the training of N different models built for each value of mtry

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
res <- tuneMTRY(cachexiaData, iterations = 50, maxntree = 600, mtry_length = 10, graph = F)
l <- optimizeMTRY(res$oob)

paretoscale 13

paretoscale Pareto scaling method performed on the columns of the data table (i.e.
metabolite concentrations measured by 1H NMR or binned 1H NMR
spectra)

Description

The function provides a data pretreatment approach called Pareto Scaling. Each column of the table
is given a mean of zero by substracting the column column mean from each value in the column;
then each value in each column is divided by a scaling factor, represented by the square root of the
standard deviation of the column values.

Usage

paretoscale(data, exclude = T)

Arguments

data a n x p matrix of n observations and p predictors. If the first two columns of the
matrix represent respectively the sample names and the class labels associated
to each sample, the scaling method should not include these two columns

exclude a boolean variable. If set to True the scaling method will exclude the first two
columns.

Details

This function is useful when variables have significantly different scales. It is generally the preferred
option in NMR Metabolomics because it is a good compromise between no scaling (centering) and
auto scaling

Value

a scaled version of the input matrix

Author(s)

Piegiorgio Palla

Examples

#' ## load the included example dataset
data(cachexiaData)
call paretoscale with the parameter exclude set to TRUE (default)
in order to exclude the first two columns of the dataset from scaling
data.scaled <- paretoscale(cachexiaData, exclude = TRUE)

14 pca

pca Principal Component Analysis

Description

Performs a principal component analysis based on Singular Value Decomposition, on the given data
matrix and returns the result as an object of the S3 class pca

Usage

pca(X, autoscale = T, exclude = T)

Arguments

X a n x p data frame of n observations and p variables.

autoscale a logical value indicating whether the variables should be autoscaled

exclude a logical value indicating whether the first two columns should be excluded from
the computation. The default is TRUE, because usually the first two columns
of the dataset processed represent respectively the sample names and the class
labels associated with the samples

Value

an S3 object of class pca with the following components:

• scores the scores matrix

• loadings the loading matrix

• variances the vector of variances explained by each PC

• classes the vector of the class labels associated with the samples

• features the vector with the names of the input variables

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
pca_obj <- pca(cachexiaData, autoscale = TRUE, exclude = TRUE)

plot.mccv 15

plot.mccv Plotting single or multiple ROC curves of the cross-validated Random
Forest models plot.mccv allows to plot single or multiple ROC curves
to characterize the performace of a cross-validated Random Forest
model

Description

Plotting single or multiple ROC curves of the cross-validated Random Forest models plot.mccv
allows to plot single or multiple ROC curves to characterize the performace of a cross-validated
Random Forest model

Usage

S3 method for class 'mccv'
plot(x, y, ..., opt = list(avg = "vertical", colorize = F))

Arguments

x an object of class mccv

y not used

... optional graphical parameters

opt a list containing the following optional parameters:

• avg if the mccv object represents the predictions obtained from different
cross-validation runs, we can have a different roc curve for each cv run.
These curves can be averaged or not. Allowed values are none (plot all
curves separately), horizontal (horizontal averaging), vertical(vertical aver-
aging) and threshold (threshold averaging).

• colorize a logical value which indicates if the curve(s) shoud be colorized
according to the cutoff.

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
params <- list(ntrees = 500, ref_level = levels(cachexiaData[,2])[1])
mccv_obj <- rfMCCV(cachexiaData, nsplits = 50, test_prop = 1/3, opt_params = params)
params = list(avg = 'vertical', colorize = FALSE)
plot.mccv(mccv_obj, opt = params)

16 plot.pca.loadings

plot.mds Multi-dimensional Scaling (MDS) Plot

Description

This function plots the scaling coordinates of the proximity matrix from random forest.

Usage

S3 method for class 'mds'
plot(mds_obj, xrange, yrange)

Arguments

mds_obj an object of class mds

xrange a vector of two elements indicating the interval along the x-axis in which we
want to display the names of the samples

yrange a vector of two elements indicating the interval along the y-axis in which we
want to display the names of the samples

Details

From the trained model we can get the dissimilarity matrix ** 1 - prox(i,j) ** The entries of this
matrix can be seen as squared distances in a Euclidean high dimensional space. After having cal-
culated scaling coordinates, we can project the data onto a lower dimensional space, preserving (as
much as possible) the distances between the orginal points. This plot can be useful for discovering
patterns in data.

Examples

data(cachexiaData)
params = list(ntree = 1000, mtry = round(sqrt(ncol(cachexiaData) -2)), seed = 1234)
mds_obj <- mds(cachexiaData, opt = params)
plot.mds(mds_obj = mds_obj)

plot.pca.loadings PCA Loadings plot This function plots the relation between the origi-
nal variables and the subspace dimensions. It is useful for interpreting
relationships among variables.

Description

PCA Loadings plot

This function plots the relation between the original variables and the subspace dimensions. It is
useful for interpreting relationships among variables.

plot.pca.scores 17

Usage

S3 method for class 'pca.loadings'
plot(pca_obj, nvar)

Arguments

pca_obj an object of class pca

nvar the number of variables to plot

... optional graphical parameters

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
pca_obj <- pca(cachexiaData, autoscale = TRUE, exclude = TRUE)
plot.pca.loadings(pca_obj, nvar = 20)

plot.pca.scores PCA Scores plot This function creates a plot that graphically projects
the original samples onto the subspce spanned by the first two princi-
pal components

Description

PCA Scores plot

This function creates a plot that graphically projects the original samples onto the subspce spanned
by the first two principal components

Usage

S3 method for class 'pca.scores'
plot(pca_obj, dataset, xrange, yrange)

Arguments

pca_obj an object of class pca

dataset a n x p dataframe representing the dataset used to create the pca object

xrange a vector of two elements indicating the range of values along the x-axis in which
eventually it will be specified the name of the samples

yrange a vector of two elements indicating the range of values along the y-axis in which
eventually it will be specified the name of the samples

18 plotAUCvsCombinations

Details

The Scores plot is used for interpreting relations among the observations

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
pca_obj <- pca(cachexiaData, autoscale = TRUE, exclude = TRUE)
plot.pca.scores(pca_obj, cachexiaData)

plotAUCvsCombinations Plotting the average AUC as a function of the number of combinations

Description

This function allows to plot the average AUC as a function of the number k-combinations of the
n input variables. If n is the number of input variables, the number of k-combinations of those
variables is equal to n!/k!(n! − k!). Each of these combinations contains the indexes of the input
variables selected. For each combination we can extract a dataset, build a random forest model and
perform a cross-validation. We can describe the performance of each cross-validated model with
an ’average’ ROC curve and its AUC. The collected auc values for each combination (dataset) are
used by the function to build a diagram of the AUC as a function of the number of combinations

Usage

plotAUCvsCombinations(auc_values, num_of_variables, num_of_combinations)

Arguments

auc_values an array with the auc values to plot

num_of_variables

the k dimension of each combination
num_of_combinations

the number of k combinations of the set of the input variables

Author(s)

Piergiorgio Palla

plotOOBvsMTRY 19

plotOOBvsMTRY Plotting the average OOB error and its 95% confidence interval as a
function of the mtry parameter

Description

Plotting the average OOB error and its 95% confidence interval as a function of the mtry parameter

Usage

plotOOBvsMTRY(mean_matrix, ci_matrix)

Arguments

mean_matrix a 1 x p matrix where p is the number of mtry values tested. Each value represents
the average OOB error obtained training multiple Random Forest models with a
defined value of mtry

ci_matrix a 2 x p matrix containing the extremes of the confidence interval of the average
OOB error.

Value

a graphical representation of the average OOB error as a function of the mtry parameter.

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
res <- tuneMTRY(cachexiaData, iterations = 5, maxntree = 600, mtry_length = 10, graph = F)
l <- optimizeMTRY(res$oob)
plotOOBvsMTRY(l$mean_matrix, l$ci_matrix)

plotVarFreq Variable Frequency Plot

Description

This function plots the probability of selection of each variable (metabolite) as the proportion of
times that is selected by AUCRF method

Usage

plotVarFreq(varFrequency, thd = 0.4, color = "blue", hcol = "red")

20 rfMCCV

Arguments

varFrequency a numeric vector with the probabilities of selection of each input variable

thd a numeric value that indicates the lower limit of probability of variables to be
represented. The default value is 0.4 (40%)

color the color of the graph

hcol the color of the horizontal line, indicating the lower limit of the probability of
selection of variables

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
rf.aucv1 <- aucMCV(cachexiaData, ref_level = 'control')
plotVarFreq(varFrequency = rf.aucv1$Psel, thd=0.55)

rfMCCV Monte Carlo cross-validation of Random Forest models

Description

This function allows to perform a Monte Carlo cross-validation of a Random Forest

Usage

rfMCCV(data, nsplits, test_prop, opt_params)

Arguments

data a n x p dataframe used to build the models. The first two columns must represent
respectively the sample names and the class labels related to each sample

nsplits the number of random splittings of the original dataset into training and test data
sets

test_prop the percentage (expressed as a real number) of the observations of the original
dataset to be included in each test set

opt_params a list of optional parameters characterizing both the model to be validated and
the input dataset. It may include parameters like the number of trees (ntree), the
mtry, or the eventual reference class label (ref_level) of the dataset

rfMCCVPerf 21

Value

a list of three elements:

• a n x p dataframe representing the predictions during the cross-validation process. Its number
of lines is equal to the number of observations included in each test set and the number of
columns is equal to the number of test sets (defined by the nsplits input parameter).

• a n x p dataframe representing the labels associated to the samples of each test set. Its number
of lines n is equal to the number observations in each test set while p is the number of test sets
defined by the nsplits input parameter

• a list of p random forest models tested in the cross-validation process

@examples data(cachexiaData) params <- list(ntrees = 500, ref_level = levels(cachexiaData[,2])[1]
) mccv_obj <- rfMCCV(cachexiaData, nsplits = 5, test_prop = 1/3, opt_params = params)

Author(s)

Piergiorgio Palla

rfMCCVPerf Extracting average accuracy and recall of a list of Random Forest
models

Description

This function provides the average accuracy and the recall of a list of Random Forest models

Usage

rfMCCVPerf(model_list)

Arguments

model_list a list of different Random Forest models

Value

a list of the two elements:

• avg_accuracy the average accuracy

• avg_recall the average recall

Author(s)

Piergiorgio Palla

22 rsd

Examples

data(cachexiaData)
params <- list(ntrees = 500, ref_level = levels(cachexiaData[,2])[1])
mccv_obj <- rfMCCV(cachexiaData, nsplits = 5, test_prop = 1/3, opt_params = params)
models <- mccv_obj$models
res <- rfMCCVPerf(models)

rsd Computing relative standard deviation of a vector

Description

This function computes the relative standard deviation (also known as coefficient of variation) of
a numeric vector defined as the ratio of the standard deviation to the mean of the vector elements,
expressed as percentage

Usage

rsd(v)

Arguments

v a numeric vector

Details

the coefficient of variation shows the extent of variability in relation to mean of the population. It
is expressed as a percentage. Lower values indicate lower variability.

Value

the value of the coefficient of variation of the input vector expressed as a percentage and rounded
to two decimal places

Author(s)

Piergiorgio Palla

Examples

v <- runif(10, min = 5, max = 30)
rsd(v)

rsdFilter 23

rsdFilter Filtering less informative variables

Description

rsdFilter removes from the dataframe the predictors with a relative standard deviation less than
or equal to an inserted threshold

Usage

rsdFilter(data, threshold, exclude = T)

Arguments

data a n x p data frame with n observations and p columns. While the first two
columns usually represent the names of the samples and the class labels related
to each sample respectively, the remaining columns represent metabolite con-
centrations measured by 1H NMR or bins of 1H NMR spectra

threshold a numeric value representing a limit: each predictor with a relative standard
deviation lower than that will be removed form the dataframe

exclude a logical variable which stores a simple True / False setting. If set to True the
filtering method will exclude the first two columns.

Value

a list containing the filtered dataset, a vector with the names of the varables excluded and a vector
with the indexes of the variables eliminated

Author(s)

Piergiorgio Palla

Examples

load the included example dataset
data(cachexiaData)
call rsdFilter with the parameter exclude set to TRUE (default)
in order to exclude the first two columns of the dataset from scaling
data.filtered <- rsdFilter(cachexiaData, threshold = 15, exclude = TRUE)

24 simpleData

screeplot Scree Plot

Description

This function creates a graphical display of the variances against the number of principal compo-
nents. It is used to determine how many components should be retained in order to explain a high
percentage of the variation in the data

Usage

screeplot(pca_obj, ncomp)

Arguments

pca_obj an object of class pca
ncomp the number of components to plot

Details

screplot generates 2 graphs that represent respectively the relative variances and the cumulative
variances associated with the principal components

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
pca_obj <- pca(cachexiaData, autoscale = TRUE, exclude = TRUE)
screeplot(pca_obj, ncomp = 10)

simpleData simpleData

Description

A list of two vectors named respectively predictions and labels

Usage

data(simpleData)

Format

An object of class list of length 2.

tuneMTRY 25

tuneMTRY Tuning of the mtry parameter for a Random Forest model

Description

tuneMTRY tries to identify the ’optimal’ value of the mtry parameter which indicates the number of
input variables randomly chosen at each node

Usage

tuneMTRY(data, iterations, maxntree, mtry_length, changeTreeNum = F,
graph = T)

Arguments

data the n x p dataframe used to build the models and to tune the parameter mtry.
The first two columns must represent respectively the sample names and the
class labels related to each sample

iterations the number of different random forest models built for each value of mtry
maxntree the maximum number of trees of each random forest model
mtry_length an integer value representing the number of mtry values to test.
changeTreeNum a logical value indicating whether or not to change
graph a logical value indicating whether to plot the OOB error as a function of the

parameter mtry the number of trees during the tuning of mtry

Details

The function searches for the optimal value of mtry assigning to it a set of values and building
different random forests (also with a different number of trees) for each value of the mtry. The
number of models built for each mtry is defined by the iteration parameter. The oob errors of
each random forest model, computed for each mtry value, are then arranged in a matrix

Value

a list of two elements:

• a diagram of the average value of the OOB error as a function of the mtry with its 95%
confidence interval

• a n x p matrix of n iterations and p mtry values tested

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
res <- tuneMTRY(cachexiaData, iterations = 10, maxntree = 600, mtry_length = 10, graph = FALSE)

26 tuneNTREE

tuneNTREE Tuning of the ntree parameter (i.e. the number of trees) for a Random
Forest model

Description

This function tries to find the ’optimal’ value for the parameter ntree which indicates the number
of trees used to grow the ensemble of trees. To do that it will build several random forest models
with a different number of trees for the mtry value considered. The number of models built for each
ntree value will be equal to the parameter iteration. The oob errors of each random forest model,
computed for each ntree value will be arranged in a matrix.

Usage

tuneNTREE(data, mtry, iterations, minNTREE = 500, pace = 100,
seq_length = 5)

Arguments

data the n x p dataframe used to build the Random Forest models. The first two
columns must represent respectively the sample names and the class labels as-
sociated to each sample

mtry the chosen mtry value

iterations the number of Random Forest models to be built for each value of ntree

minNTREE the minimum number of trees of each random forest model.

pace the pace between each value of ntree to be tested

seq_length the number of ntree values to be tested

Value

a n x p matrix in which n is the number of models considered and p is the number of ntree values
tested. Each column represents the oob errors resulting from each model and corresponding to the
different ntree values

Author(s)

Piergiorgio Palla

Examples

data(cachexiaData)
res <- tuneNTREE(cachexiaData, 8, iterations = 50, minNTREE = 600, pace = 100, seq_length = 10)

Index

∗Topic datasets
cachexiaData, 4
simpleData, 24

aucMCV, 2
autoscale, 3

cachexiaData, 4
combinatorialRFMCCV, 5

forestPerformance, 6

getAvgAUC, 6
getBestRFModel, 7

lqvarFilter, 8

mccv, 9
mds, 10
meanCenter, 11

optimizeMTRY, 12

paretoscale, 13
pca, 14
plot.mccv, 15
plot.mds, 16
plot.pca.loadings, 16
plot.pca.scores, 17
plotAUCvsCombinations, 18
plotOOBvsMTRY, 19
plotVarFreq, 19

rfMCCV, 20
rfMCCVPerf, 21
rsd, 22
rsdFilter, 23

screeplot, 24
simpleData, 24

tuneMTRY, 25
tuneNTREE, 26

27

	aucMCV
	autoscale
	cachexiaData
	combinatorialRFMCCV
	forestPerformance
	getAvgAUC
	getBestRFModel
	lqvarFilter
	mccv
	mds
	meanCenter
	optimizeMTRY
	paretoscale
	pca
	plot.mccv
	plot.mds
	plot.pca.loadings
	plot.pca.scores
	plotAUCvsCombinations
	plotOOBvsMTRY
	plotVarFreq
	rfMCCV
	rfMCCVPerf
	rsd
	rsdFilter
	screeplot
	simpleData
	tuneMTRY
	tuneNTREE
	Index

