
Package ‘RJDemetra’
November 11, 2021

Type Package

Title Interface to 'JDemetra+' Seasonal Adjustment Software

Version 0.1.9

Description Interface around 'JDemetra+' (<https:
//github.com/jdemetra/jdemetra-app>), the seasonal adjustment software officially
recommended to the members of the European Statistical System (ESS) and the European Sys-
tem of Central Banks.
It offers full access to all options and outputs of 'JDemetra+', including the two leading sea-
sonal adjustment methods
TRAMO/SEATS+ and X-12ARIMA/X-13ARIMA-SEATS.

Depends R (>= 3.1.1),

Imports rJava (>= 0.9-8), graphics, grDevices, methods, stats, utils

SystemRequirements Java JRE between 8 and 15.

License EUPL

URL https://github.com/jdemetra/rjdemetra

LazyData TRUE

Suggests knitr, rmarkdown

RoxygenNote 7.1.2

BugReports https://github.com/jdemetra/rjdemetra/issues

Encoding UTF-8

NeedsCompilation no

Author Alain Quartier-la-Tente [aut, cre]
(<https://orcid.org/0000-0001-7890-3857>),
Anna Michalek [aut],
Jean Palate [aut],
Raf Baeyens [aut]

Maintainer Alain Quartier-la-Tente <alain.quartier@yahoo.fr>

Repository CRAN

Date/Publication 2021-11-11 15:10:02 UTC

1

https://github.com/jdemetra/jdemetra-app
https://github.com/jdemetra/jdemetra-app
https://github.com/jdemetra/rjdemetra
https://github.com/jdemetra/rjdemetra/issues
https://orcid.org/0000-0001-7890-3857

2 add_sa_item

R topics documented:
add_sa_item . 2
compute . 3
count . 4
get_model . 5
get_name . 6
get_object . 7
get_ts . 8
ipi_c_eu . 9
jSA . 11
load_workspace . 13
new_workspace . 13
plot . 14
regarima . 16
regarima_spec_tramoseats . 21
regarima_spec_x13 . 31
save_spec . 41
save_workspace . 43
specification . 44
tramoseats . 47
tramoseats_spec . 50
user_defined_variables . 60
x13 . 61
x13_spec . 64

Index 75

add_sa_item Add a seasonally adjusted series to a multi-processing

Description

Function to add a new seasonally adjusted object (class "SA" or "jSA") to a workspace object.

Usage

add_sa_item(workspace, multiprocessing, sa_obj, name)

Arguments

workspace the workspace to add the seasonally adjusted series to.
multiprocessing

the name or index of the multiprocessing to add the seasonally adjusted series
to.

sa_obj the seasonally adjusted object to add

name the name of the seasonally adjustd series in the multiprocessing. By default the
name of the sa_obj is used.

compute 3

See Also

load_workspace, save_workspace

Examples

dir <- tempdir()
Adjustment of a series with the x13 and Tramo-Seats methods
spec_x13 <- x13_spec(spec = "RSA5c", easter.enabled = FALSE)
sa_x13 <- x13(ipi_c_eu[, "FR"], spec = spec_x13)
spec_ts <- tramoseats_spec(spec = "RSA5")
sa_ts <- jtramoseats(ipi_c_eu[, "FR"], spec = spec_ts)

Creation of a new workspace..
wk <- new_workspace()
and of the multiprocessing "sa1" that will contain the series
new_multiprocessing(wk, "sa1")
Addition of the adjusted series to the workspace via the sa1 multiprocessing
add_sa_item(wk, "sa1", sa_x13, "X13")
add_sa_item(wk, "sa1", sa_ts, "TramoSeats")

Export of the new filled workspace
save_workspace(wk, file.path(dir, "workspace.xml"))

compute Compute a workspace multi-processing(s)

Description

Function to compute all the multi-processings or only a given one from a workspace. By default, the
workspace only contains definitions: computation is needed to recalculate and access the adjusted
model (with get_model).

Usage

compute(workspace, i)

Arguments

workspace the workspace to compute.

i a character or numeric indicating the name or the index of the multiprocessing
to compute. By default, all multi-processings are computed.

See Also

get_model

4 count

Examples

spec_x13 <- x13_spec(spec = "RSA5c", easter.enabled = FALSE)
sa_x13 <- x13(ipi_c_eu[, "FR"], spec = spec_x13)

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
add_sa_item(wk, "sa1", sa_x13, "X13")
sa_item1 <- get_object(mp, 1)

get_model(sa_item1, wk) # Returns NULL

compute(wk)

get_model(sa_item1, wk) # Returns the SA model sa_x13

count Count the number of objects inside a workspace or multiprocessing

Description

Generic functions to count the number of multiprocessing (respectively sa_item) inside a workspace
(respectively multiprocessing).

Usage

count(x)

Arguments

x the workspace or the multiprocessing.

See Also

Other functions to retrieve information from a workspace, multiprocessing or sa_item: get_model,
get_name, get_ts.

Examples

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
count(wk) # 1 multiprocessing inside the workspace wk
count(mp) # 0 sa_item inside the multiprocessing mp

get_model 5

get_model Get the seasonally adjusted model from a workspace

Description

Generic functions to retrieve seasonally adjusted model(s) from workspace, multiprocessing or
sa_item object. get_model returns a "SA" object while get_jmodel returns the Java objects of the
models.

Usage

get_jmodel(x, workspace, userdefined = NULL, progress_bar = TRUE)

get_model(x, workspace, userdefined = NULL, progress_bar = TRUE)

Arguments

x the object from which to retrieve the seasonally adjusted model.

workspace the workspace object where models are stored. If x is a workspace object, this
parameter is not used.

userdefined a vector containing the names of additional output variables. (see x13 or tramoseats).

progress_bar boolean: if TRUE, a progress bar is printed.

Value

get_model() returns a seasonally adjusted object (class c("SA","X13") or c("SA","TRAMO_SEATS")
or a list of seasonally adjusted objects:

• if x is a sa_item object, get_model(x) returns a "SA" object (or a jSA object with get_jmodel(x));

• if x is a multiprocessing object, get_ts(x) returns a list of length the number of sa_items,
each element containing a "SA" object (or a jSA object with get_jmodel(x));

• if x is a workspace object, get_ts(x) returns list of length the number of multiprocessings,
each element containing a list of "SA" object(s) (or jSA object’s) with get_jmodel(x)).

See Also

Other functions to retrieve information from a workspace, multiprocessing or sa_item: count,
get_name, get_ts.

compute

6 get_name

Examples

spec_x13 <- x13_spec(spec = "RSA5c", easter.enabled = FALSE)
sa_x13 <- x13(ipi_c_eu[, "FR"], spec = spec_x13)
spec_ts <- tramoseats_spec(spec = "RSA5")
sa_ts <- tramoseats(ipi_c_eu[, "FR"], spec = spec_ts)

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
add_sa_item(wk, "sa1", sa_x13, "X13")
add_sa_item(wk, "sa1", sa_ts, "TramoSeats")

compute(wk) # It's important to compute the workspace before retrieving the SA model
sa_item1 <- get_object(mp, 1)

get_model(sa_item1, wk) # To extract the model of the sa_item1: its the object sa_x13

To get all models from the multiprocessing mp:
get_model(mp, wk)

To get all models from the workspace wk:
get_model(wk)

get_name Get the Java name of a multiprocessing or a sa_item

Description

Generic functions to retrieve the Java name of a multiprocessing or a sa_item.

Usage

get_name(x)

Arguments

x the object to retrieve the name from.

Value

A character.

See Also

Other functions to retrieve information from a workspace, multiprocessing or sa_item: count,
get_model, get_ts.

get_object 7

Examples

spec_x13 <- x13_spec(spec = "RSA5c", easter.enabled = FALSE)
sa_x13 <- x13(ipi_c_eu[, "FR"], spec = spec_x13)
spec_ts <- tramoseats_spec(spec = "RSA5")
sa_ts <- tramoseats(ipi_c_eu[, "FR"], spec = spec_ts)

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
add_sa_item(wk, "sa1", sa_x13, "X13")
add_sa_item(wk, "sa1", sa_ts, "TramoSeats")

sa_item1 <- get_object(mp, 1)
sa_item2 <- get_object(mp, 2)

get_name(sa_item1) # returns "X13"
get_name(sa_item2) # returns "TramoSeats"

get_name(mp) # returns "sa1"

To retrieve the name of every sa_item in a given multiprocessing:
sapply(get_all_objects(mp), get_name)

To retrieve the name of every multiprocessing in a given workspace:
sapply(get_all_objects(wk), get_name)

To retrieve the name of every sa_item in a given workspace:
lapply(get_all_objects(wk),function(mp){

sapply(get_all_objects(mp), get_name)
})

get_object Get objects inside a workspace or multiprocessing

Description

Generic functions to retreive all (get_all_objects()) multiprocessing (respectively sa_item)
from a workspace (respectively multiprocessing) or to retreive a single one (get_object()) .

Usage

get_object(x, pos = 1)

get_all_objects(x)

Arguments

x the object to store the extracted multiprocessing or sa_item.
pos the index of the object to extract.

8 get_ts

Value

An object of class multiprocessing or sa_item (for get_object()) or a list of objects of class
multiprocessing or sa_item (for get_all_objects()).

See Also

Other functions to retrieve informations from a workspace, multiprocessing or sa_item: count,
get_model, get_name, get_ts.

Examples

sa_x13 <- x13(ipi_c_eu[, "FR"], spec = "RSA5c")

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
add_sa_item(wk, "sa1", sa_x13, "X13")

A way to retrieve the multiprocessing:
mp <- get_object(wk, 1)
And the sa_item object:
sa_item <- get_object(mp, 1)

get_ts Get the input raw time series

Description

Generic functions to retrieve the input raw time series of a workspace, multiprocessing, sa_item
or SA object.

Usage

get_ts(x)

Arguments

x the object from which to retrieve the time series.

Value

get_ts() returns a ts object or list of ts objects:

• if x is a sa_item or a SA object, get_ts(x) returns a single ts object;
• if x is a multiprocessing object, get_ts(x) returns a list of length the number of sa_items,

each element being a ts object;
• if x is a workspace object, get_ts(x) returns a list of length the number of multiprocessings,

each element being a list of ts objects.

ipi_c_eu 9

See Also

Other functions to retrieve information from a workspace, multiprocessing or sa_item: count,
get_model, get_name.

Examples

sa_x13 <- x13(ipi_c_eu[, "FR"], spec = "RSA5c")

wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")
add_sa_item(wk, "sa1", sa_x13, "X13")
sa_item <- get_object(mp, 1)

Extracting the raw time series from an adjusted series:
get_ts(sa_x13) # Returns the ts object ipi_c_eu[, "FR"]

Extracting the raw time series from a sa_item:
get_ts(sa_item) # Returns the ts object ipi_c_eu[, "FR"]

Extracting all raw time series from a multiprocessing:
Returns a list of length 1 named "X13" containing the ts object ipi_c_eu[, "FR"]:
get_ts(mp)

Extracting all raw time series from a workspace:
Returns a list of length 1 named "sa1" containing a list
of length 1 named "X13", containing the ts object ipi_c_eu[, "FR"]
get_ts(wk)

ipi_c_eu Industrial Production Indices in manufacturing in the European Union

Description

A dataset containing on monthly industrial production indices in manufacturing in the European
Union (from sts_inpr_m dataset of Eurostat). Data are based 100 in 2015 and are unadjusted, i.e.
neither seasonally adjusted nor calendar adjusted.

Usage

ipi_c_eu

Format

A monthly ts object from january 1990 to december 2020 with 34 variables.

10 ipi_c_eu

Details

The dataset contains 34 time series corresponding to the following geographical area

jSA 11

BE Belgium
BG Bulgaria
CZ Czechia
DK Denmark
DE Germany (until 1990 former territory of the FRG)
EE Estonia
IE Ireland
EL Greece
ES Spain
FR France
HR Croatia
IT Italy
CY Cyprus
LV Latvia
LT Lithuania
LU Luxembourg
HU Hungary
MT Malta
NL Netherlands
AT Austria
PL Poland
PT Portugal
RO Romania
SI Slovenia
SK Slovakia
FI Finland
SE Sweden
UK United Kingdom
NO Norway
CH Switzerland
ME Montenegro
MK Former Yugoslav Republic of Macedonia, the
RS Serbia
TR Turkey
BA Bosnia and Herzegovina

Source

http://ec.europa.eu/eurostat/wdds/rest/data/v2.1/json/en/sts_inpr_m?nace_r2=C&precision=
1&sinceTimePeriod=1980M01&unit=I15&s_adj=NSA

jSA Functions around ’jSA’ objects

Description

get_dictionary returns the indicators that can be extracted from "jSA" objects, get_indicators
extracts a list of indicators jSA2R returns the corresponding "SA".

http://ec.europa.eu/eurostat/wdds/rest/data/v2.1/json/en/sts_inpr_m?nace_r2=C&precision=1&sinceTimePeriod=1980M01&unit=I15&s_adj=NSA
http://ec.europa.eu/eurostat/wdds/rest/data/v2.1/json/en/sts_inpr_m?nace_r2=C&precision=1&sinceTimePeriod=1980M01&unit=I15&s_adj=NSA

12 jSA

Usage

get_jspec(x, ...)

get_dictionary(x)

get_indicators(x, ...)

jSA2R(x, userdefined = NULL)

Arguments

x a "jSA" object.

... characters containing the names of the indicators to extract.

userdefined a userdefined vector containing the names of additional output variables (see
user_defined_variables). Only used for "SA" objects.

Details

A "jSA" object is a list of three elements:

• "result": the Java object containing the results of a seasonal adjustment or a pre-adjustment
method.

• "spec": the Java object containing the specification of a seasonal adjustment or a pre-adjustment
method.

• "dictionary": the Java object containing the dictionary of a seasonal adjustment or a pre-
adjustment method. In particular, it contains all the user-defined regressors.

get_dictionary returns the list of indicators that can be extracted from a jSA object by the function
get_indicators.

jSA2R returns the corresponding formatted seasonally adjusted ("SA" object) or RegARIMA ("regarima"
object) model.

get_jspec returns the Java object that contains the specification of an object. Such object can be
of type "jSA", "X13", "TRAMO_SEATS" or "sa_item".

Value

get_dictionary returns a vector of characters, get_indicators returns a list containing the in-
dicators that are extracted, jSA2R returns a "SA" or a "regarima" object and get_jspec returns a
Java object.

Examples

myseries <- ipi_c_eu[, "FR"]
mysa <- jx13(myseries, spec = "RSA5c")
get_dictionary(mysa)

get_indicators(mysa, "decomposition.b2", "decomposition.d10")

load_workspace 13

To convert the Java object to an R object
jSA2R(mysa)

load_workspace Load a ’JDemetra+’ workpace

Description

Function to load a ’JDemetra+’ workspace.

Usage

load_workspace(file)

Arguments

file the path to the ’JDemetra+’ workspace to load. By default a dialog box opens.

Value

An object of class "workspace".

See Also

save_workspace, get_model

new_workspace Create a workspace or a multi-processing

Description

Functions to create a ’JDemetra+’ workspace (new_workspace()) and to add a new multi-processing
(new_multiprocessing()).

Usage

new_workspace()

new_multiprocessing(workspace, name)

Arguments

workspace a workspace object

name character name of the new multiprocessing

14 plot

Value

new_workspace() returns an object of class workspace and new_multiprocessing() returns an
object of class multiprocessing.

See Also

load_workspace, save_workspace, add_sa_item

Examples

To create and export an empty 'JDemetra+' workspace
wk <- new_workspace()
mp <- new_multiprocessing(wk, "sa1")

plot Plotting regarima, decomposition or final results of a SA

Description

Plotting methods for the S3 class objects around the seasonal adjustment: "regarima" for Re-
gARIMA,"decomposition_X11" and "decomposition_SEATS" for the decomposition with X13
and TRAMO-SEATS, "final" for the final SA results and "SA" for the entire seasonal adjustment
object. The function plot.SA just calls the function plot.final.

Usage

S3 method for class 'regarima'
plot(
x,
which = 1:6,
caption = list("Residuals", "Histogram of residuals", "Normal Q-Q",
"ACF of residuals", "PACF of residuals", "Decomposition", list("Y linearised",
"Calendar effects", "Outliers effects"))[sort(which)],

ask = prod(par("mfcol")) < length(which) && dev.interactive(),
...

)

S3 method for class 'decomposition_X11'
plot(x, first_date, last_date, caption = "S-I ratio", ylim, ...)

S3 method for class 'decomposition_SEATS'
plot(x, first_date, last_date, caption = "S-I ratio", ylim, ...)

S3 method for class 'final'
plot(

plot 15

x,
first_date,
last_date,
forecast = TRUE,
type_chart = c("sa-trend", "cal-seas-irr"),
caption = c(`sa-trend` = "Y, Sa, trend", `cal-seas-irr` =

"Cal., sea., irr.")[type_chart],
ask = length(type_chart) > 1 && dev.interactive(),
ylim,
...

)

S3 method for class 'SA'
plot(x, ...)

Arguments

x the object to plot

which a numeric vector specifying which graphs should be plotted: (1) "Residuals", (2)
"Histogram of residuals", (3) "Normal Q-Q", (4) "ACF of residuals", (5) "PACF
of residuals", (6) "Decomposition", (7) "Decomposition - zoom"

caption a string containing the graph title

ask a boolean. If TRUE, the user will be prompted before a new graphical page is
started.

... other parameters

first_date the plot starting date. If missing, the plot starts at the beginning of the time-
series.

last_date the end date of the plot. If missing, the plot ends at the end of the time-series
(eventually, including forecast).

ylim the y limits of the plot.

forecast a boolean indicating if forecasts should be included in the plot. If TRUE, the
forecast is plotted.

type_chart a string indicating which type of chart to plot

Examples

myseries <- ipi_c_eu[, "FR"]
mysa <- x13(myseries, spec = c("RSA5c"))

RegArima
plot(mysa$regarima) # 6 graphics are plotted by default
To plot only one graphic (here, the residuals) and change the title:
plot(mysa$regarima, which = 1, caption = "Plot of residuals")
plot(mysa$regarima, which = 7)

Decomposition
plot(mysa$decomposition) # To plot the S-I ratio

16 regarima

plot(mysa$decomposition, first_date = c(2010, 1)) # To start the plot in January 2010

Final
plot(mysa$final) # 2 graphics are plotted by default
To only plot one graphic (here the raw data, the seasonally adjusted data and the trend),
To change the last date and the title
plot(mysa$final, last_date = c(2000, 1),

caption = "Results", type_chart = "sa-trend")

regarima RegARIMA model, pre-adjustment in X13 and TRAMO-SEATS

Description

The regarima/regarima_x13/regarima_tramoseats functions decompose the input time series
in a linear deterministic component and in a stochastic component. The deterministic part of the
series can contain outliers, calendar effects and regression effects. The stochastic part is defined by a
seasonal multiplicative ARIMA model, as discussed by BOX, G.E.P., and JENKINS, G.M. (1970).
The jregarima/jregarima_x13/jregarima_tramoseats functions do the same computation but
return the Java objects instead of a formatted output.

Usage

jregarima(series, spec = NA)

jregarima_tramoseats(
series,
spec = c("TRfull", "TR0", "TR1", "TR2", "TR3", "TR4", "TR5")

)

jregarima_x13(series, spec = c("RG5c", "RG0", "RG1", "RG2c", "RG3", "RG4c"))

regarima(series, spec = NA)

regarima_tramoseats(
series,
spec = c("TRfull", "TR0", "TR1", "TR2", "TR3", "TR4", "TR5")

)

regarima_x13(series, spec = c("RG5c", "RG0", "RG1", "RG2c", "RG3", "RG4c"))

Arguments

series a univariate time series

spec the model specification. For the function:

• regarima: an object of class c("regarima_spec","X13") or c("regarima_spec","TRAMO_SEATS").
See the functions regarima_spec_x13 and regarima_spec_tramoseats.

regarima 17

• regarima_x13: the name of a predefined X13 ’JDemetra+’ model specifi-
cation (see Details). The default value is "RG5c".

• regarima_tramoseats:the name of a predefined TRAMO-SEATS ’JDeme-
tra+’ model specification (see Details). The default value is "TRfull".

Details

When seasonally adjusting with X13 and TRAMO-SEATS, the first step consists in pre-adjusting
the original series with a RegARIMA model, where the original series is corrected for any deter-
ministic effects and missing observations. This step is also referred to as the linearization of the
original series.

The RegARIMA model (model with ARIMA errors) is specified as such:

zt = ytβ + xt

where:

• zt is the original series;

• β = (β1, ..., βn) is a vector of regression coefficients;

• yt = (y1t, ..., ynt) are n regression variables (outliers, calendar effects, user-defined vari-
ables);

• xt is a disturbance that follows the general ARIMA process: φ(B)δ(B)xt = θ(B)at; where
φ(B), δ(B) and θ(B) are finite polynomials in B and at is a white noise variable with zero
mean and a constant variance.

The polynomial φ(B) is a stationary autoregressive (AR) polynomial in B, which is a product of
the stationary regular AR polynomial in B and the stationary seasonal polynomial in Bs:

φ(B) = φp(B)Φbp(Bs) = (1 + φ1B + ...+ φpB
p)(1 + Φ1B

s + ...+ ΦbpB
bps)

where:

• p is the number of regular AR terms (here and in ’JDemetra+’, p ≤ 3);

• bp is the number of seasonal AR terms (here and in ’JDemetra+’, bp ≤ 1);

• s is the number of observations per year (ie. The time series frequency).

The polynomial θ(B) is an invertible moving average (MA) polynomial in B, which is a product of
the invertible regular MA polynomial in B and the invertible seasonal MA polynomial in Bs:

θ(B) = θq(B)Θbq(Bs) = (1 + θ1B + ...+ θqB
q)(1 + Θ1B

s + ...+ ΘbqB
bqs)

where:

• q is the number of regular MA terms (here and in ’JDemetra+’, q ≤ 3);

• bq is the number of seasonal MA terms (here and in ’JDemetra+’, bq ≤ 1).

18 regarima

The polynomial δ(B) is the non-stationary AR polynomial in B (unit roots):

δ(B) = (1 −B)d(1 −Bs)ds

where:

• d is the regular differencing order (here and in ’JDemetra+’, d ≤ 1);

• ds is the seasonal differencing order (here and in ’JDemetra+’, ds ≤ 1).

NB. The notations used for AR and MA processes, as well as the model denoted as ARIMA
(P,D,Q)(BP,BD,BQ), are consistent with those in ’JDemetra+’.

The available predefined ’JDemetra+’ X13 and TRAMO-SEATS model specifications are described
in the tables below:

X13:

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RG0 | NA | NA | NA | Airline(+mean)
RG1 | automatic | AO/LS/TC | NA | Airline(+mean)

RG2c | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RG3 | automatic | AO/LS/TC | NA | automatic

RG4c | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RG5c | automatic | AO/LS/TC | 7 td vars + Easter | automatic

TRAMO-SEATS:

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
TR0 | NA | NA | NA | Airline(+mean)
TR1 | automatic | AO/LS/TC | NA | Airline(+mean)
TR2 | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
TR3 | automatic | AO/LS/TC | NA | automatic
TR4 | automatic | AO/LS/TC | 2 td vars + Easter | automatic
TR5 | automatic | AO/LS/TC | 7 td vars + Easter | automatic

TRfull | automatic | AO/LS/TC | automatic | automatic

Value

The jregarima/jregarima_x13/jregarima_tramoseats functions return a jSA object that con-
tains the result of the pre-adjustment method without any formatting. Therefore, the computation
is faster than with the regarima/regarima_x13/regarima_tramoseats functions. The results of
the seasonal adjustment can be extracted with the function get_indicators.

The regarima/regarima_x13/regarima_tramoseats functions return an object of class "regarima"
and sub-class "X13" or "TRAMO_SEATS". regarima_x13 returns an object of class c("regarima","X13")
and regarima_tramoseats, an object of class c("regarima","TRAMO_SEATS"). For the function
regarima, the sub-class of the object depends on the used method that is defined by the spec object
class.

An object of class "regarima" is a list containing the following components:

regarima 19

specification a list with the model specification as defined by the spec argument. See also the
Value of the regarima_spec_x13 and regarima_spec_tramoseats functions.

arma a vector containing the orders of the autoregressive (AR), moving average (MA),
seasonal AR and seasonal MA processes, as well as the regular and seasonal
differencing orders (P,D,Q) (BP,BD,BQ).

arima.coefficients

a matrix containing the estimated regular and seasonal AR and MA coefficients,
as well as the associated standard errors and t-statistics values. The estimated
coefficients can be also extracted with the function coef (whose output also
includes the regression coefficients).

regression.coefficients

a matrix containing the estimated regression variables (i.e.: mean, calendar ef-
fect, outliers and user-defined regressors) coefficients, as welm as the associated
standard errors and t-statistics values. The estimated coefficients can be also
extracted with the function coef (whose output also includes the arima coeffi-
cients).

loglik a matrix containing the log-likelihood of the RegARIMA model as well as the
associated model selection criteria statistics (AIC, AICC, BIC and BICC) and
parameters (np = number of parameters in the likelihood, neffectiveobs =
number of effective observations in the likelihood). These statistics can also be
extracted with the function logLik.

model a list containing information on the model specification after its estimation (spec_rslt),
as well as the decomposed elements of the input series (ts matrix, effects).
The model specification includes information on the estimation method (Model)
and time span (T.span), whether the original series was log transformed (Log
transformation) and details on the regression part of the RegARIMA model
i.e. if it includes a Mean, Trading days effects (if so, it provides the number of
regressors), Leap year effect, Easter effect and whether outliers were detected
(Outliers (if so, it provides the number of outliers). The decomposed elements
of the input series contain the linearised series (y_lin) and the deterministic
components i.e.: trading days effect (tde), Easter effect (ee), other moving hol-
idays effect (omhe) and outliers effect (total - out, related to irregular - out_i,
related to trend - out_t, related to seasonal - out_s).

residuals the residuals (time series). They can be also extracted with the function residuals.

residuals.stat a list containing statistics on the RegARIMA residuals. It provides the residuals
standard error (st.error) and the results of normality, independence and linear-
ity of the residuals (tests) - object of class c("regarima_rtests","data.frame").

forecast a ts matrix containing the forecast of the original series (fcst) and its standard
error (fcsterr).

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting and Control", Holden-
Day, San Francisco.

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

20 regarima

BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis:
Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.

Examples

X13 method
myseries <- ipi_c_eu[, "FR"]
myreg <- regarima_x13(myseries, spec ="RG5c")
summary(myreg)
plot(myreg)

myspec1 <- regarima_spec_x13(myreg, tradingdays.option = "WorkingDays")
myreg1 <- regarima(myseries, myspec1)

myspec2 <- regarima_spec_x13(myreg, usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS", "AO"),
usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
usrdef.outliersCoef = c(36, 14),
transform.function = "None")

myreg2 <- regarima(myseries, myspec2)
myreg2

myspec3 <- regarima_spec_x13(myreg, automdl.enabled = FALSE,
arima.p = 1, arima.q = 1,
arima.bp = 0, arima.bq = 1,
arima.coefEnabled = TRUE,
arima.coef = c(-0.8, -0.6, 0),
arima.coefType = c(rep("Fixed", 2), "Undefined"))

s_arimaCoef(myspec3)
myreg3 <- regarima(myseries, myspec3)
summary(myreg3)
plot(myreg3)

TRAMO-SEATS method
myspec <- regarima_spec_tramoseats("TRfull")
myreg <- regarima(myseries, myspec)
myreg

myspec2 <- regarima_spec_tramoseats(myspec, tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)

myreg2 <- regarima(myseries, myspec2)

var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var <- ts.union(var1, var2)
myspec3 <- regarima_spec_tramoseats(myspec,

usrdef.varEnabled = TRUE, usrdef.var = var)
s_preVar(myspec3)
myreg3 <- regarima(myseries, myspec3)
myreg3

regarima_spec_tramoseats 21

regarima_spec_tramoseats

RegARIMA model specification, pre-adjustment in TRAMO-SEATS

Description

Function to create (and/or modify) a c("regarima_spec","TRAMO_SEATS") class object with the
RegARIMA model specification for the TRAMO-SEATS method. The object can be created from
the name (character) of a predefined ’JDemetra+’ model specification, a previous specification
(c("regarima_spec","TRAMO_SEATS") object) or a TRAMO-SEATS RegARIMA model (c("regarima","TRAMO_SEATS")).

Usage

regarima_spec_tramoseats(
spec = c("TRfull", "TR0", "TR1", "TR2", "TR3", "TR4", "TR5"),
preliminary.check = NA,
estimate.from = NA_character_,
estimate.to = NA_character_,
estimate.first = NA_integer_,
estimate.last = NA_integer_,
estimate.exclFirst = NA_integer_,
estimate.exclLast = NA_integer_,
estimate.tol = NA_integer_,
estimate.eml = NA,
estimate.urfinal = NA_integer_,
transform.function = c(NA, "Auto", "None", "Log"),
transform.fct = NA_integer_,
usrdef.outliersEnabled = NA,
usrdef.outliersType = NA,
usrdef.outliersDate = NA,
usrdef.outliersCoef = NA,
usrdef.varEnabled = NA,
usrdef.var = NA,
usrdef.varType = NA,
usrdef.varCoef = NA,
tradingdays.mauto = c(NA, "Unused", "FTest", "WaldTest"),
tradingdays.pftd = NA_integer_,
tradingdays.option = c(NA, "TradingDays", "WorkingDays", "UserDefined", "None"),
tradingdays.leapyear = NA,
tradingdays.stocktd = NA_integer_,
tradingdays.test = c(NA, "Separate_T", "Joint_F", "None"),
easter.type = c(NA, "Unused", "Standard", "IncludeEaster", "IncludeEasterMonday"),
easter.julian = NA,
easter.duration = NA_integer_,
easter.test = NA,

22 regarima_spec_tramoseats

outlier.enabled = NA,
outlier.from = NA_character_,
outlier.to = NA_character_,
outlier.first = NA_integer_,
outlier.last = NA_integer_,
outlier.exclFirst = NA_integer_,
outlier.exclLast = NA_integer_,
outlier.ao = NA,
outlier.tc = NA,
outlier.ls = NA,
outlier.so = NA,
outlier.usedefcv = NA,
outlier.cv = NA_integer_,
outlier.eml = NA,
outlier.tcrate = NA_integer_,
automdl.enabled = NA,
automdl.acceptdefault = NA,
automdl.cancel = NA_integer_,
automdl.ub1 = NA_integer_,
automdl.ub2 = NA_integer_,
automdl.armalimit = NA_integer_,
automdl.reducecv = NA_integer_,
automdl.ljungboxlimit = NA_integer_,
automdl.compare = NA,
arima.mu = NA,
arima.p = NA_integer_,
arima.d = NA_integer_,
arima.q = NA_integer_,
arima.bp = NA_integer_,
arima.bd = NA_integer_,
arima.bq = NA_integer_,
arima.coefEnabled = NA,
arima.coef = NA,
arima.coefType = NA,
fcst.horizon = NA_integer_

)

Arguments

spec the model specification. It can be the name (character) of a predefined ’JDeme-
tra+’ model specification (see Details), an object of class c("regarima_spec","TRAMO_SEATS")
or an object of class c("regarima","TRAMO_SEATS"). The default is "TRfull".

preliminary.check

a logical to check the quality of the input series and exclude highly problematic
series e.g. the series with a number of identical observations and/or missing
values above pre-specified threshold values.
The time span of the series to be used for the estimation of the RegArima model
coefficients (default from 1900-01-01 to 2020-12-31) is controlled by the fol-

regarima_spec_tramoseats 23

lowing six variables: estimate.from,estimate.to,estimate.first,estimate.last,estimate.exclFirst
and estimate.exclLast; where estimate.from and estimate.to have prior-
ity over remaining span control variables, estimate.last and estimate.first
have priority over estimate.exclFirst and estimate.exclLast, and estimate.last
has priority over estimate.first.

estimate.from character in format "YYYY-MM-DD" indicating the start of the time span
(e.g. "1900-01-01"). Can be combined with estimate.to.

estimate.to a character in format "YYYY-MM-DD" indicating the end of the time span
(e.g. "2020-12-31"). It can be combined with the parameter estimate.from.

estimate.first numeric, the number of periods considered at the beginning of the series.
estimate.last numeric, the number of periods considered at the end of the series.
estimate.exclFirst

numeric, the number of periods excluded at the beginning of the series. It can
be combined with the parameter estimate.exclLast.

estimate.exclLast

numeric, the number of periods excluded at the end of the series. It can be
combined with the parameter estimate.exclFirst.

estimate.tol numeric, the convergence tolerance. The absolute changes in the log-likelihood
function are compared to this value to check for the convergence of the estima-
tion iterations.

estimate.eml logical, the exact maximum likelihood estimation. If TRUE, the program per-
forms an exact maximum likelihood estimation. If FASLE, the Unconditional
Least Squares method is used.

estimate.urfinal

numeric, the final unit root limit. The threshold value for the final unit root
test for identification of differencing orders. If the magnitude of an AR root
for the final model is smaller than this number, then a unit root is assumed, the
order of the AR polynomial is reduced by one and the appropriate order of the
differencing (non-seasonal, seasonal) is increased.

transform.function

the transformation of the input series: "None" = no transformation of the series;
"Log" = takes the log of the series; "Auto" = the program tests for the log-level
specification.

transform.fct numeric controlling the bias in the log/level pre-test: transform.fct > 1
favours levels, transform.fct< 1 favours logs. Considered only when transform.function
is set to "Auto".
Control variables for the pre-specified outliers. Said pre-specified outliers are
used in the model only when enabled (usrdef.outliersEnabled=TRUE) and
when the outliers’ type (usrdef.outliersType) and date (usrdef.outliersDate)
are provided.

usrdef.outliersEnabled

logical. If TRUE, the program uses the pre-specified outliers.
usrdef.outliersType

a vector defining the outliers’ type. Possible types are: ("AO") = additive,
("LS") = level shift, ("TC") = transitory change, ("SO") = seasonal outlier. E.g.:
usrdef.outliersType= c("AO","AO","LS").

24 regarima_spec_tramoseats

usrdef.outliersDate

a vector defining the outliers’ date. The dates should be characters in format
"YYYY-MM-DD". E.g.: usrdef.outliersDate= c("2009-10-01","2005-02-01","2003-04-01").

usrdef.outliersCoef

a vector providing fixed coefficients for the outliers. The coefficients can’t be
fixed if the parameter transform.function is set to "Auto" (i.e. if the se-
ries transformation needs to be pre-defined.) E.g.: usrdef.outliersCoef=
c(200,170,20).
Control variables for the user-defined variables:

usrdef.varEnabled

logical If TRUE, the program uses the user-defined variables.

usrdef.var a time series (ts) or a matrix of time series (mts) containing the user-defined
variables.

usrdef.varType a vector of character(s) defining the user-defined variables component type. Pos-
sible types are: "Undefined","Series","Trend","Seasonal","SeasonallyAdjusted","Irregular","Calendar".
To use the user-defined calendar regressors, the type "Calendar" must be de-
fined in conjunction with tradingdays.option = "UserDefined". Otherwise,
the program will automatically set usrdef.varType = "Undefined".

usrdef.varCoef a vector providing fixed coefficients for the user-defined variables. The coeffi-
cients can’t be fixed if transform.function is set to "Auto" (i.e. if the series
transformation needs to be pre-defined).

tradingdays.mauto

defines whether the calendar effects should be added to the model manually
("Unused") or automatically. During the automatic selection, the choice of the
number of calendar variables can be based on the F-Test ("FTest") or the Wald
Test ("WaldTest"); the model with higher F value is chosen, provided that it is
higher than tradingdays.pftd).

tradingdays.pftd

numeric. The p-value used in the test specified by the automatic parameter
(tradingdays.mauto) to assess the significance of the pre-tested calendar ef-
fects variables and whether they should be included in the RegArima model.
Control variables for the manual selection of calendar effects variables (tradingdays.mauto
is set to "Unused"):

tradingdays.option

to choose the trading days regression variables: "TradingDays" = six day-
of-the-week regression variables; "WorkingDays" = one working/non-working
day contrast variable; "None" = no correction for trading days and working
days effects; "UserDefined" = user-defined trading days regressors (regres-
sors must be defined by the usrdef.var argument with usrdef.varType set
to "Calendar" and usrdef.varEnabled = TRUE). "None" must also be chosen
for the "day-of-week effects" correction (and tradingdays.stocktd must be
modified accordingly).

tradingdays.leapyear

logical. Specifies if the leap-year correction should be included. If TRUE, the
model includes the leap-year effect.

regarima_spec_tramoseats 25

tradingdays.stocktd

numeric indicating the day of the month when inventories and other stock are
reported (to denote the last day of the month set the variable to 31). Modifica-
tions of this variable are taken into account only when tradingdays.option is
set to "None".

tradingdays.test

defines the pre-tests of the trading day effects: "None" = calendar variables are
used in the model without pre-testing; "Separate_T" = a t-test is applied to
each trading day variable separately and the trading day variables are included
in the RegArima model if at least one t-statistic is greater than 2.6 or if two t-
statistics are greater than 2.0 (in absolute terms); "Joint_F" = a joint F-test of
significance of all the trading day variables. The trading day effect is significant
if the F statistic is greater than 0.95.

easter.type acharacter that specifies the presence and the length of the Easter effect: "Unused"
= the Easter effect is not considered; "Standard" = influences the period of n
days strictly before Easter Sunday; "IncludeEaster" = influences the entire
period (n) up to and including Easter Sunday; "IncludeEasterMonday" = in-
fluences the entire period (n) up to and including Easter Monday.

easter.julian logical. If TRUE, the program uses the Julian Easter (expressed in Gregorian
calendar).

easter.duration

numeric indicating the duration of the Easter effect (length in days, between 1
and 15).

easter.test logical. If TRUE, the program performs a t-test for the significance of the Easter
effect. The Easter effect is considered as significant if the modulus of t-statistic
is greater than 1.96.

outlier.enabled

logical. If TRUE, the automatic detection of outliers is enabled in the defined
time span.
The time span of the series to be searched for outliers (default from 1900-01-01
to 2020-12-31) is controlled by the following six variables: outlier.from,outlier.to,outlier.first,outlier.last,outlier.exclFirst
and outlier.exclLast; where outlier.from and outlier.to have priority
over the remaining span control variables, outlier.last and outlier.first
have priority over outlier.exclFirst and outlier.exclLast, and outlier.last
has priority over outlier.first.

outlier.from a character in format "YYYY-MM-DD" indicating the start of the time span
(e.g. "1900-01-01"). It can be combined with outlier.to.

outlier.to a character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). It can be combined with outlier.from.

outlier.first numeric specifying the number of periods considered at the beginning of the
series.

outlier.last numeric specifying the number of periods considered at the end of the series.
outlier.exclFirst

numeric specifying the number of periods excluded at the beginning of the se-
ries. It can be combined with outlier.exclLast.

26 regarima_spec_tramoseats

outlier.exclLast

numeric specifying the number of periods excluded at the end of the series. It
can be combined with outlier.exclFirst.

outlier.ao logical. If TRUE, the automatic detection of additive outliers is enabled (outlier.enabled
must also be set to TRUE).

outlier.tc logical. If TRUE, the automatic detection of transitory changes is enabled
(outlier.enabled must also be set to TRUE).

outlier.ls logical. If TRUE, the automatic detection of level shifts is enabled (outlier.enabled
must also be set to TRUE).

outlier.so logical. If TRUE, the automatic detection of seasonal outliers is enabled (outlier.enabled
must also be set to TRUE).

outlier.usedefcv

logical. If TRUE, the critical value for the outliers’ detection procedure is auto-
matically determined by the number of observations in the outlier detection time
span. If FALSE, the procedure uses the entered critical value (outlier.cv).

outlier.cv numeric. The entered critical value for the outliers’ detection procedure. The
modification of this variable is only taken in to account when outlier.usedefcv
is set to FALSE.

outlier.eml logical for the exact likelihood estimation method. It controls the method
applied for a parameter estimation in the intermediate steps of the automatic de-
tection and correction of outliers. If TRUE, an exact likelihood estimation method
is used. When FALSE, the fast Hannan-Rissanen method is used.

outlier.tcrate numeric. The rate of decay for the transitory change outlier.
automdl.enabled

logical. If TRUE, the automatic modelling of the ARIMA model is enabled. If
FALSE, the parameters of the ARIMA model can be specified.
Control variables for the automatic modelling of the ARIMA model (automdl.enabled
is set to TRUE):

automdl.acceptdefault

logical. If TRUE, the default model (ARIMA(0,1,1)(0,1,1)) may be chosen in
the first step of the automatic model identification. If the Ljung-Box Q statis-
tics for the residuals is acceptable, the default model is accepted and no further
attempt will be made to identify another model.

automdl.cancel numeric, the cancelation limit. If the difference in moduli of an AR and an
MA roots (when estimating ARIMA(1,0,1)(1,0,1) models in the second step
of the automatic identification of the differencing orders) is smaller than the
cancelation limit, the two roots are assumed equal and cancel out.

automdl.ub1 numeric, the first unit root limit. It is the threshold value for the initial unit
root test in the automatic differencing procedure. When one of the roots in the
estimation of the ARIMA(2,0,0)(1,0,0) plus mean model, performed in the first
step of the automatic model identification procedure, is larger than first unit root
limit in modulus, it is set equal to unity.

automdl.ub2 numeric, the second unit root limit. When one of the roots in the estimation of
the ARIMA(1,0,1)(1,0,1) plus mean model, which is performed in the second
step of the automatic model identification procedure, is larger than second unit

regarima_spec_tramoseats 27

root limit in modulus, it is checked if there is a common factor in the corre-
sponding AR and MA polynomials of the ARMA model that can be cancelled
(see automdl.cancel). If there is no cancellation, the AR root is set equal to
unity (i.e. the differencing order changes).

automdl.armalimit

numeric, the arma limit. It is the threshold value for t-statistics of ARMA coef-
ficients and the constant term used for the final test of model parsimony. If the
highest order ARMA coefficient has a t-value smaller than this value in magni-
tude, the order of the model is reduced. If the constant term has a t-value smaller
than the ARMA limit in magnitude, it is removed from the set of regressors.

automdl.reducecv

numeric, ReduceCV. The percentage by which the outlier critical value will be
reduced when an identified model is found to have a Ljung-Box statistic with
an unacceptable confidence coefficient. The parameter should be between 0 and
1, and will only be active when automatic outlier identification is enabled. The
reduced critical value will be set to (1-ReduceCV)xCV, where CV is the original
critical value.

automdl.ljungboxlimit

numeric, the Ljung Box limit, setting the acceptance criterion for the confi-
dence intervals of the Ljung-Box Q statistic. If the LjungBox Q statistics for the
residuals of a final model is greater than Ljung Box limit, then the model is re-
jected, the outlier critical value is reduced, and model and outlier identification
(if specified) is redone with a reduced value.

automdl.compare

logical. If TRUE, the program compares the model identified by the automatic
procedure to the default model (ARIMA(0,1,1)(0,1,1)) and the model with the
best fit is selected. Criteria considered are residual diagnostics, the model struc-
ture and the number of outliers.
Control variables for the non-automatic modelling of the ARIMA model (automdl.enabled
is set to FALSE):

arima.mu logical. If TRUE, the mean is considered as part of the ARIMA model.

arima.p numeric. The order of the non-seasonal autoregressive (AR) polynomial.

arima.d numeric. The regular differencing order.

arima.q numeric. The order of the non-seasonal moving average (MA) polynomial.

arima.bp numeric. The order of the seasonal autoregressive (AR) polynomial.

arima.bd numeric. The seasonal differencing order.

arima.bq numeric. The order of the seasonal moving average (MA) polynomial.
Control variables for the user-defined ARMA coefficients. Such coefficients
can be defined for the regular and seasonal autoregressive (AR) polynomials
and moving average (MA) polynomials. The model considers the coefficients
only if the procedure for their estimation (arima.coefType) is provided, and
the number of provided coefficients matches the sum of (regular and seasonal)
AR and MA orders (p,q,bp,bq).

arima.coefEnabled

logical. If TRUE, the program uses the user-defined ARMA coefficients.

28 regarima_spec_tramoseats

arima.coef a vector providing the coefficients for the regular and seasonal AR and MA
polynominals. The length of the vector must be equal to the sum of the regular
and seasonal AR and MA orders. The coefficients shall be provided in the fol-
lowing order: regular AR (Phi - p elements), regular MA (Theta - q elements),
seasonal AR (BPhi - bp elements) and seasonal MA (BTheta - bq elements).
E.g.: arima.coef=c(0.6,0.7) with arima.p=1,arima.q=0,arima.bp=1 and
arima.bq=0.

arima.coefType avector defining the ARMA coefficients estimation procedure. Possible proce-
dures are: "Undefined" = no use of user-defined input (i.e. coefficients are
estimated), "Fixed" = fixes the coefficients at the value provided by the user,
"Initial" = the value defined by the user is used as initial condition. For orders
for which the coefficients shall not be defined, the arima.coef can be set to NA
or 0 or the arima.coefType can be set to "Undefined". E.g.: arima.coef =
c(-0.8,-0.6,NA), arima.coefType = c("Fixed","Fixed","Undefined").

fcst.horizon numeric, the forecasting horizon. The length of the forecasts generated by the
RegARIMA model in periods (positive values) or years (negative values). By
default, the program generates two years forecasts (fcst.horizon set to -2).

Details

The available predefined ’JDemetra+’ model specifications are described in the table below:

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
TR0 | NA | NA | NA | Airline(+mean)
TR1 | automatic | AO/LS/TC | NA | Airline(+mean)
TR2 | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
TR3 | automatic | AO/LS/TC | NA | automatic
TR4 | automatic | AO/LS/TC | 2 td vars + Easter | automatic
TR5 | automatic | AO/LS/TC | 7 td vars + Easter | automatic

TRfull | automatic | AO/LS/TC | automatic | automatic

Value

A list of class c("regarima_spec","TRAMO_SEATS") with the following components, each refer-
ring to a different part of the RegARIMA model specification, mirroring the arguments of the func-
tion (for details, see the arguments description). Each lowest-level component (except the span,
pre-specified outliers, user-defined variables and pre-specified ARMA coefficients) is structured
within a data frame with columns denoting different variables of the model specification and rows
referring to: first row = the base specification, as provided within the argument spec; second row
= user modifications as specified by the remaining arguments of the function (e.g.: arima.d); and
third row = the final model specification, values that will be used in the function regarima. The
final specification (third row) shall include user modifications (row two) unless they were wrongly
specified. The pre-specified outliers, user-defined variables and pre-specified ARMA coefficients
consist of a list with the Predefined (base model specification) and Final values.

• estimatea data frame containing Variables referring to: span - time span for the model estima-
tion, tolerance - argument estimate.tol, exact_ml - argument estimate.eml, urfinal -
argument esimate.urfinal. The final values can be also accessed with the function s_estimate.

regarima_spec_tramoseats 29

• transforma data frame containing variables referring to: tfunction - argument transform.function,
fct - argument transform.fct. The final values can be also accessed with the function
s_transform.

• regressiona list containing information on the user-defined variables (userdef), trading.days
effect and easter effect. The user-defined part includes: specification - data frame with
the information if pre-specified outliers (outlier) and user-defined variables (variables) are
included in the model and if fixed coefficients are used (outlier.coef and variables.coef).
The final values can be also accessed with the function s_usrdef; outliers - matrixes with
the outliers (Predefined and Final). The final outliers can be also accessed with the func-
tion s_preOut; and variables - list with the Predefined and Final user-defined variables
(series) and its description (description) including information on the variable type and
values of fixed coefficients. The final user-defined variables can be also accessed with the
function s_preVar.
The trading.days data frame variables refer to: automatic - argument tradingdays.mauto,
pftd - argument tradingdays.pftd, option - argument tradingdays.option, leapyear -
argument tradingdays.leapyear, stocktd - argument tradingdays.stocktd, test - ar-
gument tradingdays.test. The final trading.days values can be also accessed with the
function s_td. The easter data frame variables refer to: type - argument easter.type,
julian - argument easter.julian, duration - argument easter.duration, test - argu-
ment easter.test. The final easter values can be also accessed with the function s_easter.

• outliersa data frame. Variables referring to: ao - argument outlier.ao, tc - argument
outlier.tc, ls - argument outlier.ls, so - argument outlier.so, usedefcv - argument
outlier.usedefcv, cv - argument outlier.cv, eml - argument outlier.eml, tcrate - ar-
gument outlier.tcrate. The final values can be also accessed with the function s_out.

• arimaa list containing a data frame with the ARIMA settings (specification) and matrixes
giving information on the pre-specified ARMA coefficients (coefficients). The matrix
Predefined refers to the pre-defined model specification and matrix Final, to the final spec-
ification. Both matrixes contain the values of the ARMA coefficients and the procedure for
its estimation. In the data frame specification, the variable enabled refers to the argument
automdl.enabled and all remaining variables (automdl.acceptdefault,automdl.cancel,automdl.ub1,automdl.ub2,automdl.armalimit,automdl.reducecv,automdl.ljungboxlimit,automdl.compare,arima.mu,arima.p,arima.d,arima.q,arima.bp,arima.bd,arima.bq),
to the respective function arguments. The final values of the specification can be also ac-
cessed with the function s_arima, and final pre-specified ARMA coefficients with the function
s_arimaCoef.

• forecasta data frame with the forecasting horizon (argument fcst.horizon). The final value
can be also accessed with the function s_fcst.

• spana matrix containing the final time span for the model estimation and outliers’ detection.
It contains the same information as the variable span in the data frames estimate and outliers.
The matrix can be also accessed with the function s_span.

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

Examples

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

30 regarima_spec_tramoseats

myseries <- ipi_c_eu[, "FR"]
myspec1 <- regarima_spec_tramoseats(spec = "TRfull")
myreg1 <- regarima(myseries, spec = myspec1)

To modify a pre-specified model specification
myspec2 <- regarima_spec_tramoseats(spec = "TRfull",

tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)

myreg2 <- regarima(myseries, spec = myspec2)

To modify the model specification of a "regarima" object
myspec3 <- regarima_spec_tramoseats(myreg1,

tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard", automdl.enabled = FALSE,
arima.mu = TRUE)

myreg3 <- regarima(myseries, myspec3)

To modify the model specification of a "regarima_spec" object
myspec4 <- regarima_spec_tramoseats(myspec1,

tradingdays.mauto = "Unused",
tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)

myreg4 <- regarima(myseries, myspec4)

Pre-specified outliers
myspec1 <- regarima_spec_tramoseats(spec = "TRfull",

usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS", "LS"),
usrdef.outliersDate = c("2008-10-01" ,"2003-01-01"),
usrdef.outliersCoef = c(10, -8), transform.function = "None")

s_preOut(myspec1)
myreg1 <- regarima(myseries, myspec1)
myreg1
s_preOut(myreg1)

User-defined variables
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries),

frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries),

frequency = 12)
var <- ts.union(var1, var2)

myspec1 <- regarima_spec_tramoseats(spec = "TRfull",
usrdef.varEnabled = TRUE, usrdef.var = var)

s_preVar(myspec1)
myreg1 <- regarima(myseries,myspec1)

myspec2 <- regarima_spec_tramoseats(spec = "TRfull",

regarima_spec_x13 31

usrdef.varEnabled = TRUE,
usrdef.var = var, usrdef.varCoef = c(17,-1),
transform.function = "None")

myreg2 <- regarima(myseries, myspec2)

Pre-specified ARMA coefficients
myspec1 <- regarima_spec_tramoseats(spec = "TRfull",

arima.coefEnabled = TRUE, automdl.enabled = FALSE,
arima.p = 2, arima.q = 0, arima.bp = 1, arima.bq = 1,
arima.coef = c(-0.12, -0.12, -0.3, -0.99),
arima.coefType = rep("Fixed", 4))

myreg1 <- regarima(myseries, myspec1)
myreg1
summary(myreg1)
s_arimaCoef(myspec1)
s_arimaCoef(myreg1)

regarima_spec_x13 RegARIMA model specification: the pre-adjustment in X13

Description

Function to create (and/or modify) a c("regarima_spec","X13") class object with the RegARIMA
model specification for the X13 method. The object can be created from a predefined ’JDemetra+’
model specification (a character), a previous specification (c("regarima_spec","X13") object)
or a X13 RegARIMA model (c("regarima","X13")).

Usage

regarima_spec_x13(
spec = c("RG5c", "RG0", "RG1", "RG2c", "RG3", "RG4c"),
preliminary.check = NA,
estimate.from = NA_character_,
estimate.to = NA_character_,
estimate.first = NA_integer_,
estimate.last = NA_integer_,
estimate.exclFirst = NA_integer_,
estimate.exclLast = NA_integer_,
estimate.tol = NA_integer_,
transform.function = c(NA, "Auto", "None", "Log"),
transform.adjust = c(NA, "None", "LeapYear", "LengthOfPeriod"),
transform.aicdiff = NA_integer_,
usrdef.outliersEnabled = NA,
usrdef.outliersType = NA,
usrdef.outliersDate = NA,
usrdef.outliersCoef = NA,
usrdef.varEnabled = NA,

32 regarima_spec_x13

usrdef.var = NA,
usrdef.varType = NA,
usrdef.varCoef = NA,
tradingdays.option = c(NA, "TradingDays", "WorkingDays", "UserDefined", "None"),
tradingdays.autoadjust = NA,
tradingdays.leapyear = c(NA, "LeapYear", "LengthOfPeriod", "None"),
tradingdays.stocktd = NA_integer_,
tradingdays.test = c(NA, "Remove", "Add", "None"),
easter.enabled = NA,
easter.julian = NA,
easter.duration = NA_integer_,
easter.test = c(NA, "Add", "Remove", "None"),
outlier.enabled = NA,
outlier.from = NA_character_,
outlier.to = NA_character_,
outlier.first = NA_integer_,
outlier.last = NA_integer_,
outlier.exclFirst = NA_integer_,
outlier.exclLast = NA_integer_,
outlier.ao = NA,
outlier.tc = NA,
outlier.ls = NA,
outlier.so = NA,
outlier.usedefcv = NA,
outlier.cv = NA_integer_,
outlier.method = c(NA, "AddOne", "AddAll"),
outlier.tcrate = NA_integer_,
automdl.enabled = NA,
automdl.acceptdefault = NA,
automdl.cancel = NA_integer_,
automdl.ub1 = NA_integer_,
automdl.ub2 = NA_integer_,
automdl.mixed = NA,
automdl.balanced = NA,
automdl.armalimit = NA_integer_,
automdl.reducecv = NA_integer_,
automdl.ljungboxlimit = NA_integer_,
automdl.ubfinal = NA_integer_,
arima.mu = NA,
arima.p = NA_integer_,
arima.d = NA_integer_,
arima.q = NA_integer_,
arima.bp = NA_integer_,
arima.bd = NA_integer_,
arima.bq = NA_integer_,
arima.coefEnabled = NA,
arima.coef = NA,
arima.coefType = NA,

regarima_spec_x13 33

fcst.horizon = NA_integer_
)

Arguments

spec the model specification. It can be the name (character) of a pre-defined ’JDeme-
tra+’ model specification (see Details), an object of class c("regarima_spec","X13")
or an object of class c("regarima","X13"). The default value is "RG5c".

preliminary.check

a boolean to check the quality of the input series and exclude highly problematic
ones (e.g. the series with a number of identical observations and/or missing
values above pre-specified threshold values).
The time span of the series to be used for the estimation of the RegARIMA
model coefficients (default from 1900-01-01 to 2020-12-31) is controlled by the
following six variables: estimate.from,estimate.to,estimate.first,estimate.last,estimate.exclFirst
and estimate.exclLast; where estimate.from and estimate.to have prior-
ity over the remaining span control variables, estimate.last and estimate.first
have priority over estimate.exclFirst and estimate.exclLast, and estimate.last
has priority over estimate.first.

estimate.from a character in format "YYYY-MM-DD" indicating the start of the time span
(e.g. "1900-01-01"). It can be combined with the parameter estimate.to.

estimate.to a character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). It can be combined with the parameter estimate.from.

estimate.first a numeric specifying the number of periods considered at the beginning of the
series.

estimate.last numeric specifying the number of periods considered at the end of the series.

estimate.exclFirst

a numeric specifying the number of periods excluded at the beginning of the
series. It can be combined with the parameter estimate.exclLast.

estimate.exclLast

a numeric specifying the number of periods excluded at the end of the series. It
can be combined with the parameter estimate.exclFirst.

estimate.tol a numeric, convergence tolerance. The absolute changes in the log-likelihood
function are compared to this value to check for the convergence of the estima-
tion iterations.

transform.function

the transformation of the input series: "None" = no transformation of the series;
"Log" = takes the log of the series; "Auto" = the program tests for the log-level
specification.

transform.adjust

pre-adjustment of the input series for the length of period or leap year effects:
"None" = no adjustment; "LeapYear" = leap year effect; "LengthOfPeriod" =
length of period. Modifications of this variable are taken into account only when
transform.function is set to "Log".

34 regarima_spec_x13

transform.aicdiff

a numeric defining the difference in AICC needed to accept no transformation
when the automatic transformation selection is chosen (considered only when
transform.function is set to "Auto").
Control variables for the pre-specified outliers. The pre-specified outliers are
used in the model only when enabled (usrdef.outliersEnabled=TRUE) and
the outliers’ type (usrdef.outliersType) and date (usrdef.outliersDate)
are provided.

usrdef.outliersEnabled

logical. If TRUE, the program uses the pre-specified outliers.
usrdef.outliersType

a vector defining the outliers’ type. Possible types are: ("AO") = additive,
("LS") = level shift, ("TC") = transitory change, ("SO") = seasonal outlier.
E.g.: usrdef.outliersType = c("AO","AO","LS").

usrdef.outliersDate

a vector defining the outliers’ dates. The dates should be characters in format
"YYYY-MM-DD". E.g.: usrdef.outliersDate= c("2009-10-01","2005-02-01","2003-04-01").

usrdef.outliersCoef

a vector providing fixed coefficients for the outliers. The coefficients can’t be
fixed if transform.function is set to "Auto" i.e. the series transformation
need to be pre-defined. E.g.: usrdef.outliersCoef=c(200,170,20).
Control variables for the user-defined variables:

usrdef.varEnabled

a logical. If TRUE, the program uses the user-defined variables.

usrdef.var a time series (ts) or a matrix of time series (mts) with the user-defined variables.

usrdef.varType a vector of character(s) defining the user-defined variables component type. Pos-
sible types are: "Undefined","Series","Trend","Seasonal","SeasonallyAdjusted","Irregular","Calendar".
The type "Calendar"must be used with tradingdays.option = "UserDefined"
to use user-defined calendar regressors. If not specified, the program will assign
the "Undefined" type.

usrdef.varCoef a vector providing fixed coefficients for the user-defined variables. The coef-
ficients can’t be fixed if transform.function is set to "Auto" i.e. the series
transformation need to be pre-defined.

tradingdays.option

to specify the set of trading days regression variables: "TradingDays" = six
day-of-the-week regression variables; "WorkingDays" = one working/non-working
day contrast variable; "None" = no correction for trading days and working
days effects; "UserDefined" = user-defined trading days regressors (regres-
sors must be defined by the usrdef.var argument with usrdef.varType set to
"Calendar" and usrdef.varEnabled = TRUE). "None" must also be specified
for the "day-of-week effects" correction (tradingdays.stocktd to be modified
accordingly).

tradingdays.autoadjust

a logical. If TRUE, the program corrects automatically for the leap year effect.
Modifications of this variable are taken into account only when transform.function
is set to "Auto".

regarima_spec_x13 35

tradingdays.leapyear

a character to specify whether or not to include the leap-year effect in the
model: "LeapYear" = leap year effect; "LengthOfPeriod" = length of period,
"None" = no effect included. The leap-year effect can be pre-specified in the
model only if the input series hasn’t been pre-adjusted (transform.adjust set
to "None") and if the automatic correction for the leap-year effect isn’t selected
(tradingdays.autoadjust set to FALSE).

tradingdays.stocktd

a numeric indicating the day of the month when inventories and other stock are
reported (to denote the last day of the month, set the variable to 31). Modifica-
tions of this variable are taken into account only when tradingdays.option is
set to "None".

tradingdays.test

defines the pre-tests for the significance of the trading day regression variables
based on the AICC statistics: "Add" = the trading day variables are not included
in the initial regression model but can be added to the RegARIMA model after
the test; "Remove" = the trading day variables belong to the initial regression
model but can be removed from the RegARIMA model after the test; "None" =
the trading day variables are not pre-tested and are included in the model.

easter.enabled a logical. If TRUE, the program considers the Easter effect in the model.

easter.julian a logical. If TRUE, the program uses the Julian Easter (expressed in Gregorian
calendar).

easter.duration

a numeric indicating the duration of the Easter effect (length in days, between 1
and 20).

easter.test defines the pre-tests for the significance of the Easter effect based on the t-
statistic (the Easter effect is considered as significant if the t-statistic is greater
than 1.96): "Add" = the Easter effect variable is not included in the initial regres-
sion model but can be added to the RegARIMA model after the test; "Remove"
= the Easter effect variable belongs to the initial regression model but can be
removed from the RegARIMA model after the test; "None" = the Easter effect
variable is not pre-tested and is included in the model.

outlier.enabled

a logical. If TRUE, the automatic detection of outliers is enabled in the defined
time span.
The time span during which outliers will be searched (default from 1900-01-01
to 2020-12-31) is controlled by the following six variables: outlier.from,outlier.to,outlier.first,outlier.last,outlier.exclFirst
and outlier.exclLast; where outlier.from and outlier.to have priority
over the remaining span control variables, outlier.last and outlier.first
have priority over outlier.exclFirst and outlier.exclLast, and outlier.last
has priority over outlier.first.

outlier.from a character in format "YYYY-MM-DD" indicating the start of the time span
(e.g. "1900-01-01"). It can be combined with the parameter outlier.to.

outlier.to a character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). it can be combined with the parameter outlier.from.

outlier.first a numeric specifying the number of periods considered at the beginning of the
series.

36 regarima_spec_x13

outlier.last a numeric specifying the number of periods considered at the end of the series.
outlier.exclFirst

a numeric specifying the number of periods excluded at the beginning of the
series. It can be combined with the parameter outlier.exclLast.

outlier.exclLast

a numeric specifying the number of periods excluded at the end of the series. It
can be combined with the paramter outlier.exclFirst.

outlier.ao a logical. If TRUE, the automatic detection of additive outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.tc a logical. If TRUE, the automatic detection of transitory changes is enabled
(outlier.enabled must be also set to TRUE).

outlier.ls a logical. If TRUE, the automatic detection of level shifts is enabled (outlier.enabled
must be also set to TRUE).

outlier.so a logical. If TRUE, the automatic detection of seasonal outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.usedefcv

a logical. If TRUE, the critical value for the outlier detection procedure is auto-
matically determined by the number of observations in the outlier detection time
span. If FALSE, the procedure uses the entered critical value (outlier.cv).

outlier.cv a numeric. The entered critical value for the outlier detection procedure. The
modification of this variable is only taken into account when outlier.usedefcv
is set to FALSE.

outlier.method determines how the program successively adds detected outliers to the model.
At present, only the AddOne method is supported.

outlier.tcrate a numeric. The rate of decay for the transitory change outlier.
automdl.enabled

a logical. If TRUE, the automatic modelling of the ARIMA model is enabled. If
FALSE, the parameters of the ARIMA model can be specified.
Control variables for the automatic modelling of the ARIMA model (when
automdl.enabled is set to TRUE):

automdl.acceptdefault

a logical. If TRUE, the default model (ARIMA(0,1,1)(0,1,1)) may be chosen in
the first step of the automatic model identification. If the Ljung-Box Q statis-
tics for the residuals is acceptable, the default model is accepted and no further
attempt will be made to identify another model.

automdl.cancel the cancelation limit (numeric). If the difference in moduli of an AR and an
MA roots (when estimating ARIMA(1,0,1)(1,0,1) models in the second step
of the automatic identification of the differencing orders) is smaller than the
cancelation limit, the two roots are assumed equal and cancel out.

automdl.ub1 the first unit root limit (numeric). It is the threshold value for the initial unit
root test in the automatic differencing procedure. When one of the roots in the
estimation of the ARIMA(2,0,0)(1,0,0) plus mean model, performed in the first
step of the automatic model identification procedure, is larger than the first unit
root limit in modulus, it is set equal to unity.

regarima_spec_x13 37

automdl.ub2 the second unit root limit (numeric). When one of the roots in the estimation of
the ARIMA(1,0,1)(1,0,1) plus mean model, which is performed in the second
step of the automatic model identification procedure, is larger than second unit
root limit in modulus, it is checked if there is a common factor in the corre-
sponding AR and MA polynomials of the ARMA model that can be cancelled
(see automdl.cancel). If there is no cancellation, the AR root is set equal to
unity (i.e. the differencing order changes).

automdl.mixed a logical. This variable controls whether ARIMA models with non-seasonal AR
and MA terms or seasonal AR and MA terms will be considered in the auto-
matic model identification procedure. If FALSE, a model with AR and MA terms
in both the seasonal and non-seasonal parts of the model can be acceptable, pro-
vided there are no AR or MA terms in either the seasonal or non-seasonal terms.

automdl.balanced

a logical. If TRUE, the automatic model identification procedure will have a pref-
erence for balanced models (i.e. models for which the order of the combined AR
and differencing operator is equal to the order of the combined MA operator).

automdl.armalimit

the ARMA limit (numeric). It is the threshold value for t-statistics of ARMA
coefficients and constant term used for the final test of model parsimony. If the
highest order ARMA coefficient has a t-value smaller than this value in magni-
tude, the order of the model is reduced. If the constant term t-value is smaller
than the ARMA limit in magnitude, it is removed from the set of regressors.

automdl.reducecv

numeric, ReduceCV. The percentage by which the outlier’s critical value will be
reduced when an identified model is found to have a Ljung-Box statistic with
an unacceptable confidence coefficient. The parameter should be between 0 and
1, and will only be active when automatic outlier identification is enabled. The
reduced critical value will be set to (1-ReduceCV)*CV, where CV is the original
critical value.

automdl.ljungboxlimit

the Ljung Box limit (numeric). Acceptance criterion for the confidence intervals
of the Ljung-Box Q statistic. If the LjungBox Q statistics for the residuals of a
final model is greater than the Ljung Box limit, then the model is rejected, the
outlier critical value is reduced and model and outlier identification (if specified)
is redone with a reduced value.

automdl.ubfinal

numeric, final unit root limit. The threshold value for the final unit root test.
If the magnitude of an AR root for the final model is smaller than the final unit
root limit, then a unit root is assumed, the order of the AR polynomial is reduced
by one and the appropriate order of the differencing (non-seasonal, seasonal) is
increased. The parameter value should be greater than one.
Control variables for the non-automatic modelling of the ARIMA model (when
automdl.enabled is set to FALSE):

arima.mu logical. If TRUE, the mean is considered as part of the ARIMA model.

arima.p numeric. The order of the non-seasonal autoregressive (AR) polynomial.

arima.d numeric. The regular differencing order.

arima.q numeric. The order of the non-seasonal moving average (MA) polynomial.

38 regarima_spec_x13

arima.bp numeric. The order of the seasonal autoregressive (AR) polynomial.

arima.bd numeric. The seasonal differencing order.

arima.bq numeric. The order of the seasonal moving average (MA) polynomial.
Control variables for the user-defined ARMA coefficients. Coefficients can be
defined for the regular and seasonal autoregressive (AR) polynomials and mov-
ing average (MA) polynomials. The model considers the coefficients only if the
procedure for their estimation (arima.coefType) is provided, and the number
of provided coefficients matches the sum of (regular and seasonal) AR and MA
orders (p,q,bp,bq).

arima.coefEnabled

logical. If TRUE, the program uses the user-defined ARMA coefficients.

arima.coef a vector providing the coefficients for the regular and seasonal AR and MA
polynominals. The vector length must be equal to the sum of the regular and
seasonal AR and MA orders. The coefficients shall be provided in the fol-
lowing order: regular AR (Phi; p elements), regular MA (Theta; q elements),
seasonal AR (BPhi; bp elements) and seasonal MA (BTheta; bq elements).
E.g.: arima.coef=c(0.6,0.7) with arima.p=1,arima.q=0,arima.bp=1 and
arima.bq=0.

arima.coefType a vector defining the ARMA coefficients estimation procedure. Possible proce-
dures are: "Undefined" = no use of any user-defined input (i.e. coefficients are
estimated), "Fixed" = the coefficients are fixed at the value provided by the user,
"Initial" = the value defined by the user is used as the initial condition. For or-
ders for which the coefficients shall not be defined, the arima.coef can be set to
NA or 0, or the arima.coefType can be set to "Undefined". E.g.: arima.coef =
c(-0.8,-0.6,NA), arima.coefType = c("Fixed","Fixed","Undefined").

fcst.horizon the forecasting horizon (numeric). The forecast length generated by the Re-
gARIMA model in periods (positive values) or years (negative values). By de-
fault, the program generates a two-year forecast (fcst.horizon set to -2).

Details

The available predefined ’JDemetra+’ model specifications are described in the table below:

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RG0 | NA | NA | NA | Airline(+mean)
RG1 | automatic | AO/LS/TC | NA | Airline(+mean)

RG2c | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RG3 | automatic | AO/LS/TC | NA | automatic

RG4c | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RG5c | automatic | AO/LS/TC | 7 td vars + Easter | automatic

Value

A list of class c("regarima_spec","X13") with the following components, each refering to a dif-
ferent part of the RegARIMA model specification, mirroring the arguments of the function (for
details, see the arguments description). Each lowest-level component (except span, pre-specified
outliers, user-defined variables and pre-specified ARMA coefficients) is structured within a data

regarima_spec_x13 39

frame with columns denoting different variables of the model specification and rows referring to:
first row = base specification, as provided within the argument spec; second row = user modifi-
cations as specified by the remaining arguments of the function (e.g.: arima.d); and third row =
final model specification, values that will be used in the function regarima. The final specification
(third row) shall include user modifications (row two) unless they were wrongly specified. The
pre-specified outliers, user-defined variables and pre-specified ARMA coefficients consist of a list
of Predefined (base model specification) and Final values.

estimate a data frame. Variables referring to: span - time span for the model estimation,
tolerance - argument estimate.tol. The final values can also be accessed
with the function s_estimate.

transform a data frame. Variables referring to: tfunction - argument transform.function,
adjust - argument transform.adjust, aicdiff - argument transform.aicdiff.
The final values can also be accessed with the function s_transform.

regression a list containing the information on the user-defined variables (userdef), trading.days
effect and easter effect. The user-defined part includes: specification -
data frame with the information if pre-specified outliers (outlier) and user-
defined variables (variables) are included in the model and if fixed coeffi-
cients are used (outlier.coef and variables.coef). The final values can
also be accessed with the function s_usrdef; outliers - matrixes with the out-
liers (Predefined and Final). The final outliers can also be accessed with the
function s_preOut; and variables - a list with the Predefined and Final
user-defined variables (series) and its description (description) including
the information on the variable type and the values of fixed coefficients. The
final user-defined variables can also be accessed with the function s_preVar.
Within the data frame trading.days, the variables refer to: option - argument
tradingdays.option,autoadjust - argument tradingdays.autoadjust,leapyear
- argument tradingdays.leapyear,stocktd - argument tradingdays.stocktd,test
- argument tradingdays.test. The final trading.days values can be also ac-
cessed with the function s_td. Within the data frame easter variables refer to:
enabled - argument easter.enabled,julian - argument easter.julian,duration
- argument easter.duration,test - argument easter.test. The final easter
values can be also accessed with the function s_easter.

outliers a data frame. Variables referring to: enabled - argument outlier.enabled,
span - time span for the outliers’ detection, ao - argument outlier.ao,tc - ar-
gument outlier.tc,ls - argument outlier.ls,so - argument outlier.so,usedefcv
- argument outlier.usedefcv,cv - argument outlier.cv,method - argument
outlier.method,tcrate - argument outlier.tcrate. The final values can
also be accessed with the function s_out.

arima a list of a data frame with the ARIMA settings (specification) and matrixes
with the information on the pre-specified ARMA coefficients (coefficients).
The matrix Predefined refers to the pre-defined model specification, and the
matrix Final to the final specification. Both matrixes contain the value of
the ARMA coefficients and the procedure for its estimation. In the data frame
specification, the variable enabled refers to the argument automdl.enabled
and all remaining variables (automdl.acceptdefault,automdl.cancel,automdl.ub1,automdl.ub2,automdl.mixed,automdl.balanced,automdl.armalimit,automdl.reducecv,automdl.ljungboxlimit,automdl.ubfinal,arima.mu,arima.p,arima.d,arima.q,arima.bp,arima.bd,arima.bq),
to the respective function arguments. The final values of the specification can

40 regarima_spec_x13

be also accessed with the function s_arima and the final pre-specified ARMA
coefficients, with the function s_arimaCoef.

forecast a data frame with the forecast horizon (argument fcst.horizon). The final
value can also be accessed with the function s_fcst.

span a matrix containing the final time span for the model estimation and outliers’ de-
tection. It contains the same information as the variable span in the data frames
estimate and outliers. The matrix can be also accessed with the function s_span.

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

Examples

myseries <- ipi_c_eu[, "FR"]
myspec1 <- regarima_spec_x13(spec = "RG5c")
myreg1 <- regarima(myseries, spec = myspec1)

To modify a pre-specified model specification
myspec2 <- regarima_spec_x13(spec = "RG5c",

tradingdays.option = "WorkingDays")
myreg2 <- regarima(myseries, spec = myspec2)

To modify the model specification of a "regarima" object
myspec3 <- regarima_spec_x13(myreg1, tradingdays.option = "WorkingDays")
myreg3 <- regarima(myseries, myspec3)

To modify the model specification of a "regarima_spec" object
myspec4 <- regarima_spec_x13(myspec1, tradingdays.option = "WorkingDays")
myreg4 <- regarima(myseries, myspec4)

Pre-specified outliers
myspec1 <- regarima_spec_x13(spec = "RG5c", usrdef.outliersEnabled = TRUE,

usrdef.outliersType = c("LS", "AO"),
usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
usrdef.outliersCoef = c(36, 14),
transform.function = "None")

myreg1 <- regarima(myseries, myspec1)
myreg1
s_preOut(myreg1)

User-defined variables
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries),

frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries),

frequency = 12)
var <- ts.union(var1, var2)

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

save_spec 41

myspec1 <- regarima_spec_x13(spec = "RG5c", usrdef.varEnabled = TRUE,
usrdef.var = var)

myreg1 <- regarima(myseries, myspec1)
myreg1

myspec2 <- regarima_spec_x13(spec = "RG5c", usrdef.varEnabled = TRUE,
usrdef.var = var1, usrdef.varCoef = 2,
transform.function = "None")

myreg2 <- regarima(myseries, myspec2)
s_preVar(myreg2)

Pre-specified ARMA coefficients
myspec1 <- regarima_spec_x13(spec = "RG5c", automdl.enabled =FALSE,

arima.p = 1, arima.q = 1, arima.bp = 0, arima.bq = 1,
arima.coefEnabled = TRUE, arima.coef = c(-0.8, -0.6, 0),
arima.coefType = c(rep("Fixed", 2), "Undefined"))

s_arimaCoef(myspec1)
myreg1 <- regarima(myseries, myspec1)
myreg1

save_spec Saving and loading a model specification, SA and pre-adjustment in
X13 and TRAMO-SEATS

Description

save_spec saves a SA or RegARIMA model specification. load_spec loads the previously saved
model specification.

Usage

save_spec(object, file = file.path(tempdir(), "spec.RData"))

load_spec(file = "spec.RData")

Arguments

object an object of one of the following classes: c("SA_spec","X13"), c("SA_spec","TRAMO_SEATS"),
c("SA","X13"), c("SA","TRAMO_SEATS"), c("regarima_spec","X13"), c("regarima_spec","TRAMO_SEATS"),
c("regarima","X13"), c("regarima","TRAMO_SEATS").

file the (path and) name of the file where the model specification will be/has been
saved.

42 save_spec

Details

save_spec saves the final model specification of a "SA_spec", "SA", "regarima_spec" or "regarima"
class object. load_spec loads the previously saved model specification. It creates a c("SA_spec","X13"),
c("sA_spec","TRAMO_SEATS"), c("regarima_spec","X13") or c("regarima_spec","TRAMO_SEATS")
class object, in line with the class of the previously saved model specification.

Value

load_spec returns an object of class "SA_spec" or "regarima_spec".

References

Info on JDemetra+, usage and functions: https://ec.europa.eu/eurostat/cros/content/documentation_
en

Examples

myseries <- ipi_c_eu[, "FR"]
myreg1 <- regarima_x13(myseries, spec = "RG5c")
myspec2 <- regarima_spec_x13(myreg1, estimate.from = "2005-10-01", outlier.from = "2010-03-01")
myreg2 <- regarima(myseries, myspec2)

myreg3 <- regarima_tramoseats(myseries, spec = "TRfull")
myspec4 <-regarima_spec_tramoseats(myreg3, tradingdays.mauto = "Unused",

tradingdays.option ="WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)

myreg4 <-regarima(myseries, myspec4)

myspec6 <- x13_spec("RSA5c")
mysa6 <- x13(myseries, myspec6)

myspec7 <- tramoseats_spec("RSAfull")
mysa7 <- tramoseats(myseries, myspec7)

dir <- tempdir()

To save the model specification of a c("regarima_spec","X13") class object
save_spec(myspec2, file.path(dir, "specx13.RData"))
To save the model specification of a c("regarima","X13") class object
save_spec(myreg2, file.path(dir,"regx13.RData"))
To save the model specification of a c("regarima_spec","TRAMO_SEATS") class object
save_spec(myspec4, file.path(dir,"specTS.RData"))
To save the model specification of a c("regarima","TRAMO_SEATS") class object
save_spec(myreg4, file.path(dir,"regTS.RData"))
To save the model of a c("SA_spec","X13") class object
save_spec(myspec6, file.path(dir,"specFullx13.RData"))
To save the model of a c("SA","X13") class object
save_spec(mysa6, file.path(dir,"sax13.RData"))
To save the model of a c("SA_spec","TRAMO_SEATS") class object

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

save_workspace 43

save_spec(myspec7, file.path(dir,"specFullTS.RData"))
To save the model of a c("SA","TRAMO_SEATS") class object

save_spec(mysa7, file.path(dir,"saTS.RData"))

To load a model specification:
myspec2a <- load_spec(file.path(dir,"specx13.RData"))
myspec2b <- load_spec(file.path(dir,"regx13.RData"))
myspec4a <- load_spec(file.path(dir,"specTS.RData"))
myspec4b <- load_spec(file.path(dir,"regTS.RData"))
myspec6a <- load_spec(file.path(dir,"specFullx13.RData"))
myspec6b <- load_spec(file.path(dir,"sax13.RData"))
myspec7a <- load_spec(file.path(dir,"specFullTS.RData"))
myspec7b <- load_spec(file.path(dir,"saTS.RData"))

To use the re-loaded specifications and models:
regarima(myseries, myspec2a)
x13(myseries, myspec6a)
tramoseats(myseries, myspec7a)

regarima(myseries, myspec4a)
x13(myseries, myspec6b)
tramoseats(myseries, myspec7b)

save_workspace Save a workspace

Description

Function to save a workspace object into a ’JDemetra+’ workspace.

Usage

save_workspace(workspace, file)

Arguments

workspace the workspace object to export

file the path where to export the ’JDemetra+’ workspace (.xml file). By default, if
not specified, a dialog box opens.

Value

A boolean indicating whether the export is successful.

See Also

load_workspace

44 specification

Examples

dir <- tempdir()
Creation and export of an empty 'JDemetra+' workspace
wk <- new_workspace()
new_multiprocessing(wk, "sa1")
save_workspace(wk, file.path(dir, "workspace.xml"))

specification Access a model specification, a SA or a pre-adjustment model in X13
and TRAMO-SEATS

Description

The following functions enable the access to different parts of the final model specification, as
included in the "SA","regarima","SA_spec" and "regarima_spec" S3 class objects.

Usage

s_estimate(object = NA)

s_transform(object = NA)

s_usrdef(object = NA)

s_preOut(object = NA)

s_preVar(object = NA)

s_td(object = NA)

s_easter(object = NA)

s_out(object = NA)

s_arima(object = NA)

s_arimaCoef(object = NA)

s_fcst(object = NA)

s_span(object = NA)

s_x11(object = NA)

s_seats(object = NA)

specification 45

Arguments

object an object of one of the following classes: c("SA","X13"), c("SA","TRAMO_SEATS"),
c("SA_spec","X13"), c("SA_spec","TRAMO_SEATS"), c("regarima","X13"),
c("regarima","TRAMO_SEATS"), c("regarima_spec","X13"), c("regarima_spec","TRAMO_SEATS").

Value

• s_estimate returns a data.frame with the estimate variables

• s_transform returns a data.frame with the transform variables

• s_usrdef returns a data.frame with the user-defined regressors (outliers and variables) model
specification, indicating if those variables are included in the model and if coefficients are
pre-specified

• s_preOut returns a data.frame with the pre-specified outliers

• s_preVar returns a list with information on the user-defined variables, including: series -
the time series and description - data.frame with the variable type and coefficients

• s_td returns a data.frame with the trading.days variables

• s_easter returns a data.frame with the easter variable

• s_out returns a data.frame with the outliers detection variables

• s_arima returns a data.frame with the arima variables

• s_arimaCoef returns a data.frame with the user-specified ARMA coefficients

• s_fcst returns a data.frame with the forecast horizon

• s_span returns a data.frame with the span variables

• s_x11 returns a data.frame with the x11 variables

• s_seats returns a data.frame with the seats variables

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

Examples

myseries <- ipi_c_eu[, "FR"]
myreg1 <- regarima_x13(myseries, spec = "RG5c")
myspec1 <- regarima_spec_x13(myreg1,

estimate.from = "2005-10-01",
outlier.from = "2010-03-01")

s_estimate(myreg1)
s_estimate(myspec1)

s_transform(myreg1)
s_transform(myspec1)

s_usrdef(myreg1)

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

46 specification

s_usrdef(myspec1)

myspec2 <- regarima_spec_x13(myreg1, usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS", "AO"),
usrdef.outliersDate = c("2009-10-01", "2005-02-01"))

myreg2 <- regarima(myseries, myspec2)

s_preOut(myreg2)
s_preOut(myspec2)

var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var3 <- ts.union(var1, var2)
myspec3 <- regarima_spec_x13(spec = "RG5c",

usrdef.varEnabled = TRUE,
usrdef.var = var3)

myreg3 <- regarima(myseries, myspec3)

s_preVar(myspec3)
s_preVar(myreg3)

s_td(myreg1)
s_td(myspec1)

s_easter(myreg1)
s_easter(myspec1)

s_out(myreg1)
s_out(myspec1)

s_arima(myreg1)
s_arima(myspec1)

myspec4 <- regarima_spec_x13(myreg1, automdl.enabled = FALSE,
arima.coefEnabled = TRUE,
arima.p = 1,arima.q = 1, arima.bp = 1, arima.bq = 1,
arima.coef = rep(0.2, 4),
arima.coefType = rep("Initial", 4))

myreg4 <- regarima(myseries, myspec4)

s_arimaCoef(myreg4)
s_arimaCoef(myspec4)

s_fcst(myreg1)
s_fcst(myspec1)

s_span(myreg1)
s_span(myspec1)

myspec5 <- x13_spec(spec = "RSA5c", x11.seasonalComp = FALSE)
mysa5 <- x13(myseries, myspec5)

s_x11(mysa5)

tramoseats 47

s_x11(myspec5)

myspec6 <- tramoseats_spec(spec = "RSAfull", seats.approx = "Noisy")
mysa6 <- tramoseats(myseries, myspec6)

s_seats(mysa6)
s_seats(mysa6)

tramoseats Seasonal Adjustment with TRAMO-SEATS

Description

Function to estimate the seasonally adjusted series (sa) with the TRAMO-SEATS method. This is
achieved by decomposing the time series (y) into the: trend-cycle (t), seasonal component (s) and
irregular component (i). The final seasonally adjusted series shall be free of seasonal and calendar-
related movements. tramoseats returns a preformatted result while jtramoseats returns the Java
objects of the seasonal adjustment.

Usage

jtramoseats(
series,
spec = c("RSAfull", "RSA0", "RSA1", "RSA2", "RSA3", "RSA4", "RSA5"),
userdefined = NULL

)

tramoseats(
series,
spec = c("RSAfull", "RSA0", "RSA1", "RSA2", "RSA3", "RSA4", "RSA5"),
userdefined = NULL

)

Arguments

series a univariate time series

spec a TRAMO-SEATS model specification. It can be the name (character) of a
pre-defined TRAMO-SEATS ’JDemetra+’ model specification (see Details), or
an object of class c("SA_spec","TRAMO_SEATS"). The default value is "RSAfull".

userdefined a character vector containing the additional output variables (see user_defined_variables).

Details

The first step of a seasonal adjustment consist in pre-adjusting the time series. This is done by
removing its deterministic effects, using a regression model with ARIMA noise (RegARIMA, see:
regarima). In the second part, the pre-adjusted series is decomposed into the following compo-
nents: trend-cycle (t), seasonal component (s) and irregular component (i). The decomposition can

48 tramoseats

be: additive (y = t+ s+ i) or multiplicative (y = t ∗ s ∗ i). The final seasonally adjusted series (sa)
shall be free of seasonal and calendar-related movements.

In the TRAMO-SEATS method, the second step - SEATS ("Signal Extraction in ARIMA Time
Series") - performs an ARIMA-based decomposition of an observed time series into unobserved
components. More information on the method can be found on the Bank of Spain website (https:
//www.bde.es).

The available predefined ’JDemetra+’ TRAMO-SEATS model specifications are described in the
table below:

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RSA0 | NA | NA | NA | Airline(+mean)
RSA1 | automatic | AO/LS/TC | NA | Airline(+mean)
RSA2 | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RSA3 | automatic | AO/LS/TC | NA | automatic
RSA4 | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RSA5 | automatic | AO/LS/TC | 7 td vars + Easter | automatic

RSAfull | automatic | AO/LS/TC | automatic | automatic

Value

jtramoseats returns a jSA object that contains the results of the seasonal adjustment without any
formatting. Therefore, the computation is faster than with the function tramoseats. The results of
the seasonal adjustment can be extracted with the function get_indicators.

tramoseats returns an object of class c("SA","TRAMO_SEATS"), that is, a list containing :

regarima an object of class c("regarima","TRAMO_SEATS"). More info in the Value
section of the function regarima.

decomposition an object of class "decomposition_SEATS", that is a five-element list:

• specification a list with the SEATS algorithm specification. See also the
function tramoseats_spec.

• mode the decomposition mode
• model the SEATS model list: model,sa,trend,seasonal,transitory,irregular,

each element being a matrix of estimated coefficients.
• linearized the time series matrix (mts) with the stochastic series decom-

position (input series y_lin, seasonally adjusted series sa_lin, trend t_lin,
seasonal s_lin, irregular i_lin)

• components the time series matrix (mts) with the decomposition compo-
nents (input series y_cmp, seasonally adjusted series sa_cmp, trend t_cmp,
seasonal component s_cmp, irregular i_cmp)

final an object of class c("final","mts","ts","matrix"). The matrix contains
the final results of the seasonal adjustment: the original time series (y)and its
forecast (y_f), the trend (t) and its forecast (t_f), the seasonally adjusted series
(sa) and its forecast (sa_f), the seasonal component (s)and its forecast (s_f),
and the irregular component (i) and its forecast (i_f).

diagnostics an object of class "diagnostics", that is a list containing three types of tests
results:

https://www.bde.es
https://www.bde.es

tramoseats 49

• variance_decomposition a data.frame with the tests results on the rela-
tive contribution of the components to the stationary portion of the variance
in the original series, after the removal of the long term trend;

• residuals_test a data.frame with the tests results of the presence of sea-
sonality in the residuals (including the statistic test values, the correspond-
ing p-values and the parameters description);

• combined_test the combined tests for stable seasonality in the entire se-
ries. The format is a two elements list with: tests_for_stable_seasonality,
a data.frame containing the tests results (including the statistic test value, its
p-value and the parameters description), and combined_seasonality_test,
the summary.

user_defined an object of class "user_defined": a list containing the additional userdefined
variables.

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting and Control", Holden-
Day, San Francisco.

BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis:
Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.

See Also

tramoseats_spec, x13

Examples

#Example 1
myseries <- ipi_c_eu[, "FR"]
myspec <- tramoseats_spec("RSAfull")
mysa <- tramoseats(myseries, myspec)
mysa

Equivalent to:
mysa1 <- tramoseats(myseries, spec = "RSAfull")
mysa1

#Example 2
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var <- ts.union(var1, var2)
myspec2 <- tramoseats_spec(myspec, tradingdays.mauto = "Unused",

tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE,
usrdef.varEnabled = TRUE, usrdef.var = var)

s_preVar(myspec2)

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

50 tramoseats_spec

mysa2 <- tramoseats(myseries, myspec2,
userdefined = c("decomposition.sa_lin_f",

"decomposition.sa_lin_e"))
mysa2
plot(mysa2)
plot(mysa2$regarima)
plot(mysa2$decomposition)

tramoseats_spec TRAMO-SEATS model specification, SA/TRAMO-SEATS

Description

Function to create (and/or modify) a c("SA_spec","TRAMO_SEATS") class object with the SA
model specification for the TRAMO-SEATS method. It can be done from a pre-defined ’JDeme-
tra+’ model specification (a character), a previous specification (c("SA_spec","TRAMO_SEATS")
object) or a seasonal adjustment model (c("SA","TRAMO_SEATS") object).

Usage

tramoseats_spec(
spec = c("RSAfull", "RSA0", "RSA1", "RSA2", "RSA3", "RSA4", "RSA5"),
preliminary.check = NA,
estimate.from = NA_character_,
estimate.to = NA_character_,
estimate.first = NA_integer_,
estimate.last = NA_integer_,
estimate.exclFirst = NA_integer_,
estimate.exclLast = NA_integer_,
estimate.tol = NA_integer_,
estimate.eml = NA,
estimate.urfinal = NA_integer_,
transform.function = c(NA, "Auto", "None", "Log"),
transform.fct = NA_integer_,
usrdef.outliersEnabled = NA,
usrdef.outliersType = NA,
usrdef.outliersDate = NA,
usrdef.outliersCoef = NA,
usrdef.varEnabled = NA,
usrdef.var = NA,
usrdef.varType = NA,
usrdef.varCoef = NA,
tradingdays.mauto = c(NA, "Unused", "FTest", "WaldTest"),
tradingdays.pftd = NA_integer_,
tradingdays.option = c(NA, "TradingDays", "WorkingDays", "UserDefined", "None"),
tradingdays.leapyear = NA,
tradingdays.stocktd = NA_integer_,

tramoseats_spec 51

tradingdays.test = c(NA, "Separate_T", "Joint_F", "None"),
easter.type = c(NA, "Unused", "Standard", "IncludeEaster", "IncludeEasterMonday"),
easter.julian = NA,
easter.duration = NA_integer_,
easter.test = NA,
outlier.enabled = NA,
outlier.from = NA_character_,
outlier.to = NA_character_,
outlier.first = NA_integer_,
outlier.last = NA_integer_,
outlier.exclFirst = NA_integer_,
outlier.exclLast = NA_integer_,
outlier.ao = NA,
outlier.tc = NA,
outlier.ls = NA,
outlier.so = NA,
outlier.usedefcv = NA,
outlier.cv = NA_integer_,
outlier.eml = NA,
outlier.tcrate = NA_integer_,
automdl.enabled = NA,
automdl.acceptdefault = NA,
automdl.cancel = NA_integer_,
automdl.ub1 = NA_integer_,
automdl.ub2 = NA_integer_,
automdl.armalimit = NA_integer_,
automdl.reducecv = NA_integer_,
automdl.ljungboxlimit = NA_integer_,
automdl.compare = NA,
arima.mu = NA,
arima.p = NA_integer_,
arima.d = NA_integer_,
arima.q = NA_integer_,
arima.bp = NA_integer_,
arima.bd = NA_integer_,
arima.bq = NA_integer_,
arima.coefEnabled = NA,
arima.coef = NA,
arima.coefType = NA,
fcst.horizon = NA_integer_,
seats.predictionLength = NA_integer_,
seats.approx = c(NA, "None", "Legacy", "Noisy"),
seats.trendBoundary = NA_integer_,
seats.seasdBoundary = NA_integer_,
seats.seasdBoundary1 = NA_integer_,
seats.seasTol = NA_integer_,
seats.maBoundary = NA_integer_,
seats.method = c(NA, "Burman", "KalmanSmoother", "McElroyMatrix")

52 tramoseats_spec

)

Arguments

spec a TRAMO-SEATS model specification. It can be the ’JDemetra+’ name (character)
of a predefined TRAMO-SEATS model specification (see Details), an object of
class c("SA_spec","TRAMO_SEATS") or an object of class c("SA","TRAMO_SEATS").
The default is "RSAfull".

preliminary.check

a logical to check the quality of the input series and exclude highly problematic
series e.g. the series with a number of identical observations and/or missing
values above pre-specified threshold values.
The time span of the series to be used for the estimation of the RegArima model
coefficients (default from 1900-01-01 to 2020-12-31) is controlled by the fol-
lowing six variables: estimate.from,estimate.to,estimate.first,estimate.last,estimate.exclFirst
and estimate.exclLast; where estimate.from and estimate.to have prior-
ity over remaining span control variables, estimate.last and estimate.first
have priority over estimate.exclFirst and estimate.exclLast, and estimate.last
has priority over estimate.first.

estimate.from character in format "YYYY-MM-DD" indicating the start of the time span
(e.g. "1900-01-01"). Can be combined with estimate.to.

estimate.to a character in format "YYYY-MM-DD" indicating the end of the time span
(e.g. "2020-12-31"). It can be combined with the parameter estimate.from.

estimate.first numeric, the number of periods considered at the beginning of the series.
estimate.last numeric, the number of periods considered at the end of the series.
estimate.exclFirst

numeric, the number of periods excluded at the beginning of the series. It can
be combined with the parameter estimate.exclLast.

estimate.exclLast

numeric, the number of periods excluded at the end of the series. It can be
combined with the parameter estimate.exclFirst.

estimate.tol numeric, the convergence tolerance. The absolute changes in the log-likelihood
function are compared to this value to check for the convergence of the estima-
tion iterations.

estimate.eml logical, the exact maximum likelihood estimation. If TRUE, the program per-
forms an exact maximum likelihood estimation. If FASLE, the Unconditional
Least Squares method is used.

estimate.urfinal

numeric, the final unit root limit. The threshold value for the final unit root
test for identification of differencing orders. If the magnitude of an AR root
for the final model is smaller than this number, then a unit root is assumed, the
order of the AR polynomial is reduced by one and the appropriate order of the
differencing (non-seasonal, seasonal) is increased.

transform.function

the transformation of the input series: "None" = no transformation of the series;
"Log" = takes the log of the series; "Auto" = the program tests for the log-level
specification.

tramoseats_spec 53

transform.fct numeric controlling the bias in the log/level pre-test: transform.fct > 1
favours levels, transform.fct< 1 favours logs. Considered only when transform.function
is set to "Auto".
Control variables for the pre-specified outliers. Said pre-specified outliers are
used in the model only when enabled (usrdef.outliersEnabled=TRUE) and
when the outliers’ type (usrdef.outliersType) and date (usrdef.outliersDate)
are provided.

usrdef.outliersEnabled

logical. If TRUE, the program uses the pre-specified outliers.
usrdef.outliersType

a vector defining the outliers’ type. Possible types are: ("AO") = additive,
("LS") = level shift, ("TC") = transitory change, ("SO") = seasonal outlier. E.g.:
usrdef.outliersType= c("AO","AO","LS").

usrdef.outliersDate

a vector defining the outliers’ date. The dates should be characters in format
"YYYY-MM-DD". E.g.: usrdef.outliersDate= c("2009-10-01","2005-02-01","2003-04-01").

usrdef.outliersCoef

a vector providing fixed coefficients for the outliers. The coefficients can’t be
fixed if the parameter transform.function is set to "Auto" (i.e. if the se-
ries transformation needs to be pre-defined.) E.g.: usrdef.outliersCoef=
c(200,170,20).
Control variables for the user-defined variables:

usrdef.varEnabled

logical If TRUE, the program uses the user-defined variables.

usrdef.var a time series (ts) or a matrix of time series (mts) containing the user-defined
variables.

usrdef.varType a vector of character(s) defining the user-defined variables component type. Pos-
sible types are: "Undefined","Series","Trend","Seasonal","SeasonallyAdjusted","Irregular","Calendar".
To use the user-defined calendar regressors, the type "Calendar" must be de-
fined in conjunction with tradingdays.option = "UserDefined". Otherwise,
the program will automatically set usrdef.varType = "Undefined".

usrdef.varCoef a vector providing fixed coefficients for the user-defined variables. The coeffi-
cients can’t be fixed if transform.function is set to "Auto" (i.e. if the series
transformation needs to be pre-defined).

tradingdays.mauto

defines whether the calendar effects should be added to the model manually
("Unused") or automatically. During the automatic selection, the choice of the
number of calendar variables can be based on the F-Test ("FTest") or the Wald
Test ("WaldTest"); the model with higher F value is chosen, provided that it is
higher than tradingdays.pftd).

tradingdays.pftd

numeric. The p-value used in the test specified by the automatic parameter
(tradingdays.mauto) to assess the significance of the pre-tested calendar ef-
fects variables and whether they should be included in the RegArima model.
Control variables for the manual selection of calendar effects variables (tradingdays.mauto
is set to "Unused"):

54 tramoseats_spec

tradingdays.option

to choose the trading days regression variables: "TradingDays" = six day-
of-the-week regression variables; "WorkingDays" = one working/non-working
day contrast variable; "None" = no correction for trading days and working
days effects; "UserDefined" = user-defined trading days regressors (regres-
sors must be defined by the usrdef.var argument with usrdef.varType set
to "Calendar" and usrdef.varEnabled = TRUE). "None" must also be chosen
for the "day-of-week effects" correction (and tradingdays.stocktd must be
modified accordingly).

tradingdays.leapyear

logical. Specifies if the leap-year correction should be included. If TRUE, the
model includes the leap-year effect.

tradingdays.stocktd

numeric indicating the day of the month when inventories and other stock are
reported (to denote the last day of the month set the variable to 31). Modifica-
tions of this variable are taken into account only when tradingdays.option is
set to "None".

tradingdays.test

defines the pre-tests of the trading day effects: "None" = calendar variables are
used in the model without pre-testing; "Separate_T" = a t-test is applied to
each trading day variable separately and the trading day variables are included
in the RegArima model if at least one t-statistic is greater than 2.6 or if two t-
statistics are greater than 2.0 (in absolute terms); "Joint_F" = a joint F-test of
significance of all the trading day variables. The trading day effect is significant
if the F statistic is greater than 0.95.

easter.type acharacter that specifies the presence and the length of the Easter effect: "Unused"
= the Easter effect is not considered; "Standard" = influences the period of n
days strictly before Easter Sunday; "IncludeEaster" = influences the entire
period (n) up to and including Easter Sunday; "IncludeEasterMonday" = in-
fluences the entire period (n) up to and including Easter Monday.

easter.julian logical. If TRUE, the program uses the Julian Easter (expressed in Gregorian
calendar).

easter.duration

numeric indicating the duration of the Easter effect (length in days, between 1
and 15).

easter.test logical. If TRUE, the program performs a t-test for the significance of the Easter
effect. The Easter effect is considered as significant if the modulus of t-statistic
is greater than 1.96.

outlier.enabled

logical. If TRUE, the automatic detection of outliers is enabled in the defined
time span.
The time span of the series to be searched for outliers (default from 1900-01-01
to 2020-12-31) is controlled by the following six variables: outlier.from,outlier.to,outlier.first,outlier.last,outlier.exclFirst
and outlier.exclLast; where outlier.from and outlier.to have priority
over the remaining span control variables, outlier.last and outlier.first
have priority over outlier.exclFirst and outlier.exclLast, and outlier.last
has priority over outlier.first.

tramoseats_spec 55

outlier.from a character in format "YYYY-MM-DD" indicating the start of the time span
(e.g. "1900-01-01"). It can be combined with outlier.to.

outlier.to a character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). It can be combined with outlier.from.

outlier.first numeric specifying the number of periods considered at the beginning of the
series.

outlier.last numeric specifying the number of periods considered at the end of the series.
outlier.exclFirst

numeric specifying the number of periods excluded at the beginning of the se-
ries. It can be combined with outlier.exclLast.

outlier.exclLast

numeric specifying the number of periods excluded at the end of the series. It
can be combined with outlier.exclFirst.

outlier.ao logical. If TRUE, the automatic detection of additive outliers is enabled (outlier.enabled
must also be set to TRUE).

outlier.tc logical. If TRUE, the automatic detection of transitory changes is enabled
(outlier.enabled must also be set to TRUE).

outlier.ls logical. If TRUE, the automatic detection of level shifts is enabled (outlier.enabled
must also be set to TRUE).

outlier.so logical. If TRUE, the automatic detection of seasonal outliers is enabled (outlier.enabled
must also be set to TRUE).

outlier.usedefcv

logical. If TRUE, the critical value for the outliers’ detection procedure is auto-
matically determined by the number of observations in the outlier detection time
span. If FALSE, the procedure uses the entered critical value (outlier.cv).

outlier.cv numeric. The entered critical value for the outliers’ detection procedure. The
modification of this variable is only taken in to account when outlier.usedefcv
is set to FALSE.

outlier.eml logical for the exact likelihood estimation method. It controls the method
applied for a parameter estimation in the intermediate steps of the automatic de-
tection and correction of outliers. If TRUE, an exact likelihood estimation method
is used. When FALSE, the fast Hannan-Rissanen method is used.

outlier.tcrate numeric. The rate of decay for the transitory change outlier.
automdl.enabled

logical. If TRUE, the automatic modelling of the ARIMA model is enabled. If
FALSE, the parameters of the ARIMA model can be specified.
Control variables for the automatic modelling of the ARIMA model (automdl.enabled
is set to TRUE):

automdl.acceptdefault

logical. If TRUE, the default model (ARIMA(0,1,1)(0,1,1)) may be chosen in
the first step of the automatic model identification. If the Ljung-Box Q statis-
tics for the residuals is acceptable, the default model is accepted and no further
attempt will be made to identify another model.

56 tramoseats_spec

automdl.cancel numeric, the cancelation limit. If the difference in moduli of an AR and an
MA roots (when estimating ARIMA(1,0,1)(1,0,1) models in the second step
of the automatic identification of the differencing orders) is smaller than the
cancelation limit, the two roots are assumed equal and cancel out.

automdl.ub1 numeric, the first unit root limit. It is the threshold value for the initial unit
root test in the automatic differencing procedure. When one of the roots in the
estimation of the ARIMA(2,0,0)(1,0,0) plus mean model, performed in the first
step of the automatic model identification procedure, is larger than first unit root
limit in modulus, it is set equal to unity.

automdl.ub2 numeric, the second unit root limit. When one of the roots in the estimation of
the ARIMA(1,0,1)(1,0,1) plus mean model, which is performed in the second
step of the automatic model identification procedure, is larger than second unit
root limit in modulus, it is checked if there is a common factor in the corre-
sponding AR and MA polynomials of the ARMA model that can be cancelled
(see automdl.cancel). If there is no cancellation, the AR root is set equal to
unity (i.e. the differencing order changes).

automdl.armalimit

numeric, the arma limit. It is the threshold value for t-statistics of ARMA coef-
ficients and the constant term used for the final test of model parsimony. If the
highest order ARMA coefficient has a t-value smaller than this value in magni-
tude, the order of the model is reduced. If the constant term has a t-value smaller
than the ARMA limit in magnitude, it is removed from the set of regressors.

automdl.reducecv

numeric, ReduceCV. The percentage by which the outlier critical value will be
reduced when an identified model is found to have a Ljung-Box statistic with
an unacceptable confidence coefficient. The parameter should be between 0 and
1, and will only be active when automatic outlier identification is enabled. The
reduced critical value will be set to (1-ReduceCV)xCV, where CV is the original
critical value.

automdl.ljungboxlimit

numeric, the Ljung Box limit, setting the acceptance criterion for the confi-
dence intervals of the Ljung-Box Q statistic. If the LjungBox Q statistics for the
residuals of a final model is greater than Ljung Box limit, then the model is re-
jected, the outlier critical value is reduced, and model and outlier identification
(if specified) is redone with a reduced value.

automdl.compare

logical. If TRUE, the program compares the model identified by the automatic
procedure to the default model (ARIMA(0,1,1)(0,1,1)) and the model with the
best fit is selected. Criteria considered are residual diagnostics, the model struc-
ture and the number of outliers.
Control variables for the non-automatic modelling of the ARIMA model (automdl.enabled
is set to FALSE):

arima.mu logical. If TRUE, the mean is considered as part of the ARIMA model.

arima.p numeric. The order of the non-seasonal autoregressive (AR) polynomial.

arima.d numeric. The regular differencing order.

arima.q numeric. The order of the non-seasonal moving average (MA) polynomial.

tramoseats_spec 57

arima.bp numeric. The order of the seasonal autoregressive (AR) polynomial.

arima.bd numeric. The seasonal differencing order.

arima.bq numeric. The order of the seasonal moving average (MA) polynomial.
Control variables for the user-defined ARMA coefficients. Such coefficients
can be defined for the regular and seasonal autoregressive (AR) polynomials
and moving average (MA) polynomials. The model considers the coefficients
only if the procedure for their estimation (arima.coefType) is provided, and
the number of provided coefficients matches the sum of (regular and seasonal)
AR and MA orders (p,q,bp,bq).

arima.coefEnabled

logical. If TRUE, the program uses the user-defined ARMA coefficients.

arima.coef a vector providing the coefficients for the regular and seasonal AR and MA
polynominals. The length of the vector must be equal to the sum of the regular
and seasonal AR and MA orders. The coefficients shall be provided in the fol-
lowing order: regular AR (Phi - p elements), regular MA (Theta - q elements),
seasonal AR (BPhi - bp elements) and seasonal MA (BTheta - bq elements).
E.g.: arima.coef=c(0.6,0.7) with arima.p=1,arima.q=0,arima.bp=1 and
arima.bq=0.

arima.coefType avector defining the ARMA coefficients estimation procedure. Possible proce-
dures are: "Undefined" = no use of user-defined input (i.e. coefficients are
estimated), "Fixed" = fixes the coefficients at the value provided by the user,
"Initial" = the value defined by the user is used as initial condition. For orders
for which the coefficients shall not be defined, the arima.coef can be set to NA
or 0 or the arima.coefType can be set to "Undefined". E.g.: arima.coef =
c(-0.8,-0.6,NA), arima.coefType = c("Fixed","Fixed","Undefined").

fcst.horizon numeric, the forecasting horizon. The length of the forecasts generated by the
RegARIMA model in periods (positive values) or years (negative values). By
default, the program generates two years forecasts (fcst.horizon set to -2).

seats.predictionLength

integer: the number of forecasts used in the decomposition. Negative values
correspond to numbers of years.

seats.approx character: the approximation mode. When the ARIMA model estimated by
TRAMO does not accept an admissible decomposition, SEATS: "None" - per-
forms an approximation; "Legacy" - replaces the model with a decomposable
one; "Noisy" - estimates a new model by adding a white noise to the non-
admissible model estimated by TRAMO.

seats.trendBoundary

numeric: the trend boundary. The boundary beyond which an AR root is inte-
grated in the trend component. If the modulus of the inverse real root is greater
than the trend boundary, the AR root is integrated in the trend component. Be-
low this value, the root is integrated in the transitory component.

seats.seasdBoundary

numeric: the seasonal boundary. The boundary beyond which a negative AR
root is integrated in the seasonal component.

58 tramoseats_spec

seats.seasdBoundary1

numeric: the seasonal boundary (unique). The boundary beyond which a nega-
tive AR root is integrated in the seasonal component, when the root is the unique
seasonal root.

seats.seasTol numeric: the seasonal tolerance. The tolerance (measured in degrees) to allocate
the AR non-real roots to the seasonal component (if the modulus of the inverse
complex AR root is greater than the trend boundary and the frequency of this
root differs from one of the seasonal frequencies by less than Seasonal tolerance)
or the transitory component (otherwise).

seats.maBoundary

numeric: the MA unit root boundary. When the modulus of an estimated MA
root falls in the range (xl, 1), it is set to xl.

seats.method character: the estimation method for the unobserved components. The choice
can be made from:

• "Burman": the default value. May result in a significant underestimation of
the components’ standard deviation, as it may become numerically unstable
when some roots of the MA polynomial are near 1;

• "KalmanSmoother": it is not disturbed by the (quasi-) unit roots in MA;
• "McElroyMatrix": it has the same stability issues as the Burman’s algo-

rithm.

Details

The available predefined ’JDemetra+’ model specifications are described in the table below:

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RSA0 | NA | NA | NA | Airline(+mean)
RSA1 | automatic | AO/LS/TC | NA | Airline(+mean)
RSA2 | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RSA3 | automatic | AO/LS/TC | NA | automatic
RSA4 | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RSA5 | automatic | AO/LS/TC | 7 td vars + Easter | automatic

RSAfull | automatic | AO/LS/TC | automatic | automatic

Value

A two-elements list of class c("SA_spec","TRAMO_SEATS"), containing: (1) an object of class
c("regarima_spec","TRAMO_SEATS") with the RegARIMA model specification, (2) an object of
class c("seats_spec","data.frame") with the SEATS algorithm specification. Each component
refers to a different part of the SA model specification, mirroring the arguments of the function (for
details see the function arguments in the description). Each lowest-level component (except span,
pre-specified outliers, user-defined variables and pre-specified ARMA coefficients) is structured as
a data frame with columns denoting different variables of the model specification and rows referring
to:

• first row: the base specification, as provided within the argument spec;

• second row: user modifications as specified by the remaining arguments of the function (e.g.:
arima.d);

tramoseats_spec 59

• and third row: the final model specification.
The final specification (third row) shall include user modifications (row two) unless they were
wrongly specified. The pre-specified outliers, user-defined variables and pre-specified ARMA
coefficients consist of a list of Predefined (base model specification) and Final values.

• regarimaan object of class c("regarima_spec","TRAMO_SEATS"). See Value of the function
regarima_spec_tramoseats.

• seatsa data.frame of class c("seats_spec","data.frame"), containing the seats variables
in line with the names of the arguments variables. The final values can be also accessed with
the function s_seats.

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting
and Control", Holden-Day, San Francisco.

BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis:
Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.

See Also

tramoseats

Examples

myseries <- ipi_c_eu[, "FR"]
myspec1 <- tramoseats_spec(spec = c("RSAfull"))
mysa1 <- tramoseats(myseries, spec = myspec1)

To modify a pre-specified model specification
myspec2 <- tramoseats_spec(spec = "RSAfull", tradingdays.mauto = "Unused",

tradingdays.option = "WorkingDays",
easter.type = "Standard",
automdl.enabled = FALSE, arima.mu = TRUE)

mysa2 <- tramoseats(myseries, spec = myspec2)

To modify the model specification of a "SA" object
myspec3 <- tramoseats_spec(mysa1, tradingdays.mauto = "Unused",

tradingdays.option = "WorkingDays",
easter.type = "Standard", automdl.enabled = FALSE, arima.mu = TRUE)

mysa3 <- tramoseats(myseries, myspec3)

To modify the model specification of a "SA_spec" object
myspec4 <- tramoseats_spec(myspec1, tradingdays.mauto = "Unused",

tradingdays.option = "WorkingDays",
easter.type = "Standard", automdl.enabled = FALSE, arima.mu = TRUE)

mysa4 <- tramoseats(myseries, myspec4)

Pre-specified outliers
myspec5 <- tramoseats_spec(spec = "RSAfull",

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

60 user_defined_variables

usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS", "LS"),
usrdef.outliersDate = c("2008-10-01", "2003-01-01"),
usrdef.outliersCoef = c(10,-8), transform.function = "None")

s_preOut(myspec5)
mysa5 <- tramoseats(myseries, myspec5)
mysa5
s_preOut(mysa5)

User-defined calendar regressors
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var<- ts.union(var1, var2)

myspec6 <- tramoseats_spec(spec = "RSAfull", tradingdays.option = "UserDefined",
usrdef.varEnabled = TRUE, usrdef.var = var,
usrdef.varType = c("Calendar", "Calendar"))

s_preVar(myspec6)
mysa6 <- tramoseats(myseries, myspec6)

myspec7 <- tramoseats_spec(spec = "RSAfull", usrdef.varEnabled = TRUE,
usrdef.var = var, usrdef.varCoef = c(17,-1),
transform.function = "None")

mysa7 <- tramoseats(myseries, myspec7)

Pre-specified ARMA coefficients
myspec8 <- tramoseats_spec(spec = "RSAfull",

arima.coefEnabled = TRUE, automdl.enabled = FALSE,
arima.p = 2, arima.q = 0,
arima.bp = 1, arima.bq = 1,
arima.coef = c(-0.12, -0.12, -0.3, -0.99),
arima.coefType = rep("Fixed", 4))

mysa8 <- tramoseats(myseries, myspec8)
mysa8
s_arimaCoef(myspec8)
s_arimaCoef(mysa8)

user_defined_variables

Retrieve the user-defined variable names

Description

Function to retrieve the names of the additional output variables that can be defined in x13 and
tramoseats with the parameter userdefined.

Usage

user_defined_variables(sa_object = c("X13-ARIMA", "TRAMO-SEATS"))

x13 61

Arguments

sa_object a character: "X13-ARIMA" to retrieve the additional output variables available for
the X13-ARIMA method and "TRAMO-SEATS" for the TRAMO-SEATS method.

Examples

user_defined_variables("X13-ARIMA")
user_defined_variables("TRAMO-SEATS")

x13 Seasonal Adjustment with X13-ARIMA

Description

Functions to estimate the seasonally adjusted series (sa) with the X13-ARIMA method. This is
achieved by decomposing the time series (y) into the trend-cycle (t), the seasonal component (s)
and the irregular component (i). The final seasonally adjusted series shall be free of seasonal and
calendar-related movements. x13 returns a preformatted result while jx13 returns the Java objects
resulting from the seasonal adjustment.

Usage

jx13(
series,
spec = c("RSA5c", "RSA0", "RSA1", "RSA2c", "RSA3", "RSA4c", "X11"),
userdefined = NULL

)

x13(
series,
spec = c("RSA5c", "RSA0", "RSA1", "RSA2c", "RSA3", "RSA4c", "X11"),
userdefined = NULL

)

Arguments

series a univariate time series

spec the x13 model specification. It can be the name (character) of a pre-defined
X13 ’JDemetra+’ model specification (see Details) or of a specification created
with the x13_spec function. The default value is "RSA5c".

userdefined a character vector containing the additional output variables (see user_defined_variables).

62 x13

Details

The first step of a seasonal adjustment consist in pre-adjusting the time series. This is done by
removing its deterministic effects, using a regression model with ARIMA noise (RegARIMA, see:
regarima). In the second part, the pre-adjusted series is decomposed into the following compo-
nents: trend-cycle (t), seasonal component (s) and irregular component (i). The decomposition can
be: additive (y = t+ s+ i) or multiplicative (y = t ∗ s ∗ i). The final seasonally adjusted series (sa)
shall be free of seasonal and calendar-related movements.

In the X13 method, the X11 algorithm (second step) decomposes the time series by means of linear
filters. More information on the method can be found on the U.S. Census Bureau website.

The available pre-defined ’JDemetra+’ X13 model specifications are described in the table below:

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RSA0 | NA | NA | NA | Airline(+mean)
RSA1 | automatic | AO/LS/TC | NA | Airline(+mean)

RSA2c | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RSA3 | automatic | AO/LS/TC | NA | automatic

RSA4c | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RSA5c | automatic | AO/LS/TC | 7 td vars + Easter | automatic

X11 | NA | NA | NA | NA

Value

jx13 returns the result of the seasonal adjustment in a Java (jSA) object, without any formatting.
Therefore, the computation is faster than with the x13 function. The results of the seasonal adjust-
ment can be extracted with the function get_indicators.

x13 returns an object of class c("SA","X13"), that is, a list containing the following components:

regarima an object of class c("regarima","X13"). More info in the Value section of the
function regarima.

decomposition an object of class "decomposition_X11", that is a six-element list:

• specification a list with the X11 algorithm specification. See also the
function x13_spec.

• mode the decomposition mode
• mstats the matrix with the M statistics
• si_ratio the time series matrix (mts) with the d8 and d10 series
• s_filter the seasonal filters
• t_filter the trend filter

final an object of class c("final","mts","ts","matrix"). The matrix contains
the final results of the seasonal adjustment: the original time series (y)and its
forecast (y_f), the trend (t) and its forecast (t_f), the seasonally adjusted series
(sa) and its forecast (sa_f), the seasonal component (s)and its forecast (s_f),
and the irregular component (i) and its forecast (i_f).

diagnostics an object of class "diagnostics", that is a list containing three types of tests
results:

x13 63

• variance_decomposition a data.frame with the tests results on the rela-
tive contribution of the components to the stationary portion of the variance
in the original series, after the removal of the long term trend;

• residuals_test a data.frame with the tests results of the presence of sea-
sonality in the residuals (including the statistic test values, the correspond-
ing p-values and the parameters description);

• combined_test the combined tests for stable seasonality in the entire se-
ries. The format is a two elements list with: tests_for_stable_seasonality,
a data.frame containing the tests results (including the statistic test value, its
p-value and the parameters description), and combined_seasonality_test,
the summary.

user_defined an object of class "user_defined": a list containing the additional userdefined
variables.

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en

BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting and Control", Holden-
Day, San Francisco.

BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis:
Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.

See Also

x13_spec, tramoseats

Examples

myseries <- ipi_c_eu[, "FR"]
mysa <- x13(myseries, spec = "RSA5c")

myspec1 <- x13_spec(mysa, tradingdays.option = "WorkingDays",
usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS","AO"),
usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
usrdef.outliersCoef = c(36, 14),
transform.function = "None")

mysa1 <- x13(myseries, myspec1)
mysa1
summary(mysa1$regarima)

myspec2 <- x13_spec(mysa, automdl.enabled =FALSE,
arima.coefEnabled = TRUE,
arima.p = 1, arima.q = 1, arima.bp = 0, arima.bq = 1,
arima.coef = c(-0.8, -0.6, 0),
arima.coefType = c(rep("Fixed", 2), "Undefined"))

s_arimaCoef(myspec2)
mysa2 <- x13(myseries, myspec2,

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

64 x13_spec

userdefined = c("decomposition.d18", "decomposition.d19"))
mysa2
plot(mysa2)
plot(mysa2$regarima)
plot(mysa2$decomposition)

x13_spec X-13ARIMA model specification, SA/X13

Description

Function to create (and/or modify) a c("SA_spec","X13") class object with the SA model spec-
ification for the X13 method. It can be done from a pre-defined ’JDemetra+’ model specification
(a character), a previous specification (c("SA_spec","X13") object) or a seasonal adjustment
model (c("SA","X13") object).

Usage

x13_spec(
spec = c("RSA5c", "RSA0", "RSA1", "RSA2c", "RSA3", "RSA4c", "X11"),
preliminary.check = NA,
estimate.from = NA_character_,
estimate.to = NA_character_,
estimate.first = NA_integer_,
estimate.last = NA_integer_,
estimate.exclFirst = NA_integer_,
estimate.exclLast = NA_integer_,
estimate.tol = NA_integer_,
transform.function = c(NA, "Auto", "None", "Log"),
transform.adjust = c(NA, "None", "LeapYear", "LengthOfPeriod"),
transform.aicdiff = NA_integer_,
usrdef.outliersEnabled = NA,
usrdef.outliersType = NA,
usrdef.outliersDate = NA,
usrdef.outliersCoef = NA,
usrdef.varEnabled = NA,
usrdef.var = NA,
usrdef.varType = NA,
usrdef.varCoef = NA,
tradingdays.option = c(NA, "TradingDays", "WorkingDays", "UserDefined", "None"),
tradingdays.autoadjust = NA,
tradingdays.leapyear = c(NA, "LeapYear", "LengthOfPeriod", "None"),
tradingdays.stocktd = NA_integer_,
tradingdays.test = c(NA, "Remove", "Add", "None"),
easter.enabled = NA,
easter.julian = NA,

x13_spec 65

easter.duration = NA_integer_,
easter.test = c(NA, "Add", "Remove", "None"),
outlier.enabled = NA,
outlier.from = NA_character_,
outlier.to = NA_character_,
outlier.first = NA_integer_,
outlier.last = NA_integer_,
outlier.exclFirst = NA_integer_,
outlier.exclLast = NA_integer_,
outlier.ao = NA,
outlier.tc = NA,
outlier.ls = NA,
outlier.so = NA,
outlier.usedefcv = NA,
outlier.cv = NA_integer_,
outlier.method = c(NA, "AddOne", "AddAll"),
outlier.tcrate = NA_integer_,
automdl.enabled = NA,
automdl.acceptdefault = NA,
automdl.cancel = NA_integer_,
automdl.ub1 = NA_integer_,
automdl.ub2 = NA_integer_,
automdl.mixed = NA,
automdl.balanced = NA,
automdl.armalimit = NA_integer_,
automdl.reducecv = NA_integer_,
automdl.ljungboxlimit = NA_integer_,
automdl.ubfinal = NA_integer_,
arima.mu = NA,
arima.p = NA_integer_,
arima.d = NA_integer_,
arima.q = NA_integer_,
arima.bp = NA_integer_,
arima.bd = NA_integer_,
arima.bq = NA_integer_,
arima.coefEnabled = NA,
arima.coef = NA,
arima.coefType = NA,
fcst.horizon = NA_integer_,
x11.mode = c(NA, "Undefined", "Additive", "Multiplicative", "LogAdditive",
"PseudoAdditive"),

x11.seasonalComp = NA,
x11.lsigma = NA_integer_,
x11.usigma = NA_integer_,
x11.trendAuto = NA,
x11.trendma = NA_integer_,
x11.seasonalma = NA_character_,
x11.fcasts = NA_integer_,

66 x13_spec

x11.bcasts = NA_integer_,
x11.calendarSigma = NA,
x11.sigmaVector = NA,
x11.excludeFcasts = NA

)

Arguments

spec an x13 model specification. It can be the ’JDemetra+’ name (character) of
a predefined X13 ’JDemetra+’ model specification (see Details), an object of
class c("SA_spec","X13") or an object of class c("SA","X13"). The default
is "RSA5c".

preliminary.check

a boolean to check the quality of the input series and exclude highly problematic
ones (e.g. the series with a number of identical observations and/or missing
values above pre-specified threshold values).
The time span of the series to be used for the estimation of the RegARIMA
model coefficients (default from 1900-01-01 to 2020-12-31) is controlled by the
following six variables: estimate.from,estimate.to,estimate.first,estimate.last,estimate.exclFirst
and estimate.exclLast; where estimate.from and estimate.to have prior-
ity over the remaining span control variables, estimate.last and estimate.first
have priority over estimate.exclFirst and estimate.exclLast, and estimate.last
has priority over estimate.first.

estimate.from a character in format "YYYY-MM-DD" indicating the start of the time span
(e.g. "1900-01-01"). It can be combined with the parameter estimate.to.

estimate.to a character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). It can be combined with the parameter estimate.from.

estimate.first a numeric specifying the number of periods considered at the beginning of the
series.

estimate.last numeric specifying the number of periods considered at the end of the series.
estimate.exclFirst

a numeric specifying the number of periods excluded at the beginning of the
series. It can be combined with the parameter estimate.exclLast.

estimate.exclLast

a numeric specifying the number of periods excluded at the end of the series. It
can be combined with the parameter estimate.exclFirst.

estimate.tol a numeric, convergence tolerance. The absolute changes in the log-likelihood
function are compared to this value to check for the convergence of the estima-
tion iterations.

transform.function

the transformation of the input series: "None" = no transformation of the series;
"Log" = takes the log of the series; "Auto" = the program tests for the log-level
specification.

transform.adjust

pre-adjustment of the input series for the length of period or leap year effects:
"None" = no adjustment; "LeapYear" = leap year effect; "LengthOfPeriod" =

x13_spec 67

length of period. Modifications of this variable are taken into account only when
transform.function is set to "Log".

transform.aicdiff

a numeric defining the difference in AICC needed to accept no transformation
when the automatic transformation selection is chosen (considered only when
transform.function is set to "Auto").

Control variables for the pre-specified outliers. The pre-specified outliers are
used in the model only when enabled (usrdef.outliersEnabled=TRUE) and
the outliers’ type (usrdef.outliersType) and date (usrdef.outliersDate)
are provided.

usrdef.outliersEnabled

logical. If TRUE, the program uses the pre-specified outliers.

usrdef.outliersType

a vector defining the outliers’ type. Possible types are: ("AO") = additive,
("LS") = level shift, ("TC") = transitory change, ("SO") = seasonal outlier.
E.g.: usrdef.outliersType = c("AO","AO","LS").

usrdef.outliersDate

a vector defining the outliers’ dates. The dates should be characters in format
"YYYY-MM-DD". E.g.: usrdef.outliersDate= c("2009-10-01","2005-02-01","2003-04-01").

usrdef.outliersCoef

a vector providing fixed coefficients for the outliers. The coefficients can’t be
fixed if transform.function is set to "Auto" i.e. the series transformation
need to be pre-defined. E.g.: usrdef.outliersCoef=c(200,170,20).

Control variables for the user-defined variables:
usrdef.varEnabled

a logical. If TRUE, the program uses the user-defined variables.

usrdef.var a time series (ts) or a matrix of time series (mts) with the user-defined variables.

usrdef.varType a vector of character(s) defining the user-defined variables component type. Pos-
sible types are: "Undefined","Series","Trend","Seasonal","SeasonallyAdjusted","Irregular","Calendar".
The type "Calendar"must be used with tradingdays.option = "UserDefined"
to use user-defined calendar regressors. If not specified, the program will assign
the "Undefined" type.

usrdef.varCoef a vector providing fixed coefficients for the user-defined variables. The coef-
ficients can’t be fixed if transform.function is set to "Auto" i.e. the series
transformation need to be pre-defined.

tradingdays.option

to specify the set of trading days regression variables: "TradingDays" = six
day-of-the-week regression variables; "WorkingDays" = one working/non-working
day contrast variable; "None" = no correction for trading days and working
days effects; "UserDefined" = user-defined trading days regressors (regres-
sors must be defined by the usrdef.var argument with usrdef.varType set to
"Calendar" and usrdef.varEnabled = TRUE). "None" must also be specified
for the "day-of-week effects" correction (tradingdays.stocktd to be modified
accordingly).

68 x13_spec

tradingdays.autoadjust

a logical. If TRUE, the program corrects automatically for the leap year effect.
Modifications of this variable are taken into account only when transform.function
is set to "Auto".

tradingdays.leapyear

a character to specify whether or not to include the leap-year effect in the
model: "LeapYear" = leap year effect; "LengthOfPeriod" = length of period,
"None" = no effect included. The leap-year effect can be pre-specified in the
model only if the input series hasn’t been pre-adjusted (transform.adjust set
to "None") and if the automatic correction for the leap-year effect isn’t selected
(tradingdays.autoadjust set to FALSE).

tradingdays.stocktd

a numeric indicating the day of the month when inventories and other stock are
reported (to denote the last day of the month, set the variable to 31). Modifica-
tions of this variable are taken into account only when tradingdays.option is
set to "None".

tradingdays.test

defines the pre-tests for the significance of the trading day regression variables
based on the AICC statistics: "Add" = the trading day variables are not included
in the initial regression model but can be added to the RegARIMA model after
the test; "Remove" = the trading day variables belong to the initial regression
model but can be removed from the RegARIMA model after the test; "None" =
the trading day variables are not pre-tested and are included in the model.

easter.enabled a logical. If TRUE, the program considers the Easter effect in the model.

easter.julian a logical. If TRUE, the program uses the Julian Easter (expressed in Gregorian
calendar).

easter.duration

a numeric indicating the duration of the Easter effect (length in days, between 1
and 20).

easter.test defines the pre-tests for the significance of the Easter effect based on the t-
statistic (the Easter effect is considered as significant if the t-statistic is greater
than 1.96): "Add" = the Easter effect variable is not included in the initial regres-
sion model but can be added to the RegARIMA model after the test; "Remove"
= the Easter effect variable belongs to the initial regression model but can be
removed from the RegARIMA model after the test; "None" = the Easter effect
variable is not pre-tested and is included in the model.

outlier.enabled

a logical. If TRUE, the automatic detection of outliers is enabled in the defined
time span.
The time span during which outliers will be searched (default from 1900-01-01
to 2020-12-31) is controlled by the following six variables: outlier.from,outlier.to,outlier.first,outlier.last,outlier.exclFirst
and outlier.exclLast; where outlier.from and outlier.to have priority
over the remaining span control variables, outlier.last and outlier.first
have priority over outlier.exclFirst and outlier.exclLast, and outlier.last
has priority over outlier.first.

outlier.from a character in format "YYYY-MM-DD" indicating the start of the time span
(e.g. "1900-01-01"). It can be combined with the parameter outlier.to.

x13_spec 69

outlier.to a character in format "YYYY-MM-DD" indicating the end of the time span (e.g.
"2020-12-31"). it can be combined with the parameter outlier.from.

outlier.first a numeric specifying the number of periods considered at the beginning of the
series.

outlier.last a numeric specifying the number of periods considered at the end of the series.
outlier.exclFirst

a numeric specifying the number of periods excluded at the beginning of the
series. It can be combined with the parameter outlier.exclLast.

outlier.exclLast

a numeric specifying the number of periods excluded at the end of the series. It
can be combined with the paramter outlier.exclFirst.

outlier.ao a logical. If TRUE, the automatic detection of additive outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.tc a logical. If TRUE, the automatic detection of transitory changes is enabled
(outlier.enabled must be also set to TRUE).

outlier.ls a logical. If TRUE, the automatic detection of level shifts is enabled (outlier.enabled
must be also set to TRUE).

outlier.so a logical. If TRUE, the automatic detection of seasonal outliers is enabled (outlier.enabled
must be also set to TRUE).

outlier.usedefcv

a logical. If TRUE, the critical value for the outlier detection procedure is auto-
matically determined by the number of observations in the outlier detection time
span. If FALSE, the procedure uses the entered critical value (outlier.cv).

outlier.cv a numeric. The entered critical value for the outlier detection procedure. The
modification of this variable is only taken into account when outlier.usedefcv
is set to FALSE.

outlier.method determines how the program successively adds detected outliers to the model.
At present, only the AddOne method is supported.

outlier.tcrate a numeric. The rate of decay for the transitory change outlier.
automdl.enabled

a logical. If TRUE, the automatic modelling of the ARIMA model is enabled. If
FALSE, the parameters of the ARIMA model can be specified.
Control variables for the automatic modelling of the ARIMA model (when
automdl.enabled is set to TRUE):

automdl.acceptdefault

a logical. If TRUE, the default model (ARIMA(0,1,1)(0,1,1)) may be chosen in
the first step of the automatic model identification. If the Ljung-Box Q statis-
tics for the residuals is acceptable, the default model is accepted and no further
attempt will be made to identify another model.

automdl.cancel the cancelation limit (numeric). If the difference in moduli of an AR and an
MA roots (when estimating ARIMA(1,0,1)(1,0,1) models in the second step
of the automatic identification of the differencing orders) is smaller than the
cancelation limit, the two roots are assumed equal and cancel out.

70 x13_spec

automdl.ub1 the first unit root limit (numeric). It is the threshold value for the initial unit
root test in the automatic differencing procedure. When one of the roots in the
estimation of the ARIMA(2,0,0)(1,0,0) plus mean model, performed in the first
step of the automatic model identification procedure, is larger than the first unit
root limit in modulus, it is set equal to unity.

automdl.ub2 the second unit root limit (numeric). When one of the roots in the estimation of
the ARIMA(1,0,1)(1,0,1) plus mean model, which is performed in the second
step of the automatic model identification procedure, is larger than second unit
root limit in modulus, it is checked if there is a common factor in the corre-
sponding AR and MA polynomials of the ARMA model that can be cancelled
(see automdl.cancel). If there is no cancellation, the AR root is set equal to
unity (i.e. the differencing order changes).

automdl.mixed a logical. This variable controls whether ARIMA models with non-seasonal AR
and MA terms or seasonal AR and MA terms will be considered in the auto-
matic model identification procedure. If FALSE, a model with AR and MA terms
in both the seasonal and non-seasonal parts of the model can be acceptable, pro-
vided there are no AR or MA terms in either the seasonal or non-seasonal terms.

automdl.balanced

a logical. If TRUE, the automatic model identification procedure will have a pref-
erence for balanced models (i.e. models for which the order of the combined AR
and differencing operator is equal to the order of the combined MA operator).

automdl.armalimit

the ARMA limit (numeric). It is the threshold value for t-statistics of ARMA
coefficients and constant term used for the final test of model parsimony. If the
highest order ARMA coefficient has a t-value smaller than this value in magni-
tude, the order of the model is reduced. If the constant term t-value is smaller
than the ARMA limit in magnitude, it is removed from the set of regressors.

automdl.reducecv

numeric, ReduceCV. The percentage by which the outlier’s critical value will be
reduced when an identified model is found to have a Ljung-Box statistic with
an unacceptable confidence coefficient. The parameter should be between 0 and
1, and will only be active when automatic outlier identification is enabled. The
reduced critical value will be set to (1-ReduceCV)*CV, where CV is the original
critical value.

automdl.ljungboxlimit

the Ljung Box limit (numeric). Acceptance criterion for the confidence intervals
of the Ljung-Box Q statistic. If the LjungBox Q statistics for the residuals of a
final model is greater than the Ljung Box limit, then the model is rejected, the
outlier critical value is reduced and model and outlier identification (if specified)
is redone with a reduced value.

automdl.ubfinal

numeric, final unit root limit. The threshold value for the final unit root test.
If the magnitude of an AR root for the final model is smaller than the final unit
root limit, then a unit root is assumed, the order of the AR polynomial is reduced
by one and the appropriate order of the differencing (non-seasonal, seasonal) is
increased. The parameter value should be greater than one.
Control variables for the non-automatic modelling of the ARIMA model (when
automdl.enabled is set to FALSE):

x13_spec 71

arima.mu logical. If TRUE, the mean is considered as part of the ARIMA model.

arima.p numeric. The order of the non-seasonal autoregressive (AR) polynomial.

arima.d numeric. The regular differencing order.

arima.q numeric. The order of the non-seasonal moving average (MA) polynomial.

arima.bp numeric. The order of the seasonal autoregressive (AR) polynomial.

arima.bd numeric. The seasonal differencing order.

arima.bq numeric. The order of the seasonal moving average (MA) polynomial.
Control variables for the user-defined ARMA coefficients. Coefficients can be
defined for the regular and seasonal autoregressive (AR) polynomials and mov-
ing average (MA) polynomials. The model considers the coefficients only if the
procedure for their estimation (arima.coefType) is provided, and the number
of provided coefficients matches the sum of (regular and seasonal) AR and MA
orders (p,q,bp,bq).

arima.coefEnabled

logical. If TRUE, the program uses the user-defined ARMA coefficients.

arima.coef a vector providing the coefficients for the regular and seasonal AR and MA
polynominals. The vector length must be equal to the sum of the regular and
seasonal AR and MA orders. The coefficients shall be provided in the fol-
lowing order: regular AR (Phi; p elements), regular MA (Theta; q elements),
seasonal AR (BPhi; bp elements) and seasonal MA (BTheta; bq elements).
E.g.: arima.coef=c(0.6,0.7) with arima.p=1,arima.q=0,arima.bp=1 and
arima.bq=0.

arima.coefType a vector defining the ARMA coefficients estimation procedure. Possible proce-
dures are: "Undefined" = no use of any user-defined input (i.e. coefficients are
estimated), "Fixed" = the coefficients are fixed at the value provided by the user,
"Initial" = the value defined by the user is used as the initial condition. For or-
ders for which the coefficients shall not be defined, the arima.coef can be set to
NA or 0, or the arima.coefType can be set to "Undefined". E.g.: arima.coef =
c(-0.8,-0.6,NA), arima.coefType = c("Fixed","Fixed","Undefined").

fcst.horizon the forecasting horizon (numeric). The forecast length generated by the Re-
gARIMA model in periods (positive values) or years (negative values). By de-
fault, the program generates a two-year forecast (fcst.horizon set to -2).

x11.mode character: the decomposition mode. Determines the mode of the seasonal ad-
justment decomposition to be performed: "Undefined" - no assumption con-
cerning the relationship between the time series components is made; "Additive"
- assumes an additive relationship; "Multiplicative" - assumes a multiplica-
tive relationship; "LogAdditive" - performs an additive decomposition of the
logarithms of the series being adjusted; "PseudoAdditive" - assumes an pseudo-
additive relationship. Could be changed by the program, if needed.

x11.seasonalComp

logical: if TRUE, the program computes a seasonal component. Otherwise, the
seasonal component is not estimated and its values are all set to 0 (additive
decomposition) or 1 (multiplicative decomposition).

x11.lsigma numeric: the lower sigma boundary for the detection of extreme values.

72 x13_spec

x11.usigma numeric: the upper sigma boundary for the detection of extreme values.

x11.trendAuto logical: automatic Henderson filter. If TRUE, an automatic selection of the Hen-
derson filter’s length for the trend estimation is enabled.

x11.trendma numeric: the length of the Henderson filter. The user-defined length of the Hen-
derson filter. The option is available when the automatic Henderson filter selec-
tion is disabled (x11.trendAuto=FALSE). Should be an odd number in the range
(1, 101].

x11.seasonalma a vector of character(s) specifying which seasonal moving average (i.e. sea-
sonal filter) will be used to estimate the seasonal factors for the entire series.
The vector can be of length: 1 - same seasonal filters for all periods (e.g.:
seasonalma=c("Msr")); or the period length - a seasonal filer is defined for
each period (e.g. for quarterly series: seasonalma=c("S3X3","Msr","S3X3","Msr")).
Possible filters are: "Msr","Stable","X11Default","S3X1","S3X3","S3X5","S3X9","S3X15".
"Msr" - the program chooses the final seasonal filter automatically.

x11.fcasts numeric: the number of forecasts generated by the RegARIMA model in periods
(positive values) or years (negative values).

x11.bcasts numeric: the number of backcasts used in X11. Negative figures are translated
in years of backcasts.

x11.calendarSigma

character to specify if the standard errors used for extreme values detection and
adjustment are computed: from 5 year spans of irregulars ("None", the default);
separately for each calendar month/quarter ("All"); separately for each period
only if Cochran’s hypothesis test determines that the irregular component is het-
eroskedastic by calendar month/quarter ("Signif"); separately for two com-
plementary sets of calendar months/quarters specified by the x11.sigmaVector
parameter ("Select", see parameter x11.sigmaVector).

x11.sigmaVector

a vector to specify one of the two groups of periods for whose standard er-
rors used for extreme values detection and adjustment will be computed. Only
used if x11.calendarSigma = "Select". Possible values are: "Group1" and
"Group2".

x11.excludeFcasts

logical: to exclude forecats and backcasts. If TRUE, the RegARIMA model fore-
casts and backcasts are not used during the detection of extreme values in the
seasonal adjustment routines.

Details

The available predefined ’JDemetra+’ model specifications are described in the table below:

Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA
RSA0 | NA | NA | NA | Airline(+mean)
RSA1 | automatic | AO/LS/TC | NA | Airline(+mean)

RSA2c | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)
RSA3 | automatic | AO/LS/TC | NA | automatic

RSA4c | automatic | AO/LS/TC | 2 td vars + Easter | automatic
RSA5c | automatic | AO/LS/TC | 7 td vars + Easter | automatic

X11 | NA | NA | NA | NA

x13_spec 73

Value

A two-elements list of class c("SA_spec","X13"), containing: (1) an object of class c("regarima_spec","X13")
with the RegARIMA model specification; (2) an object of class c("X11_spec","data.frame")
with the X11 algorithm specification. Each component refers to different parts of the SA model
specification, mirroring the arguments of the function (for details, see the function arguments in the
description). Each lowest-level component (except span, pre-specified outliers, user-defined vari-
ables and pre-specified ARMA coefficients) is structured as a data frame with columns denoting
different variables of the model specification and rows referring to:

• first row: the base specification, as provided within the argument spec;

• second row: user modifications as specified by the remaining arguments of the function (e.g.:
arima.d);

• and third row: the final model specification.
The final specification (third row) shall include user modifications (row two) unless they were
wrongly specified. The pre-specified outliers, user-defined variables and pre-specified ARMA
coefficients consist of a list of Predefined (base model specification) and Final values.

• regarimaan object of class c("regarima_spec","x13"). See Value of the function regarima_spec_x13.

• x11a data.frame of class c("X11_spec","data.frame"), containing the x11 variables in line
with the names of the arguments variables. The final values can be also accessed with the
function s_x11.

References

Info on ’JDemetra+’, usage and functions: https://ec.europa.eu/eurostat/cros/content/
documentation_en BOX G.E.P. and JENKINS G.M. (1970), "Time Series Analysis: Forecasting
and Control", Holden-Day, San Francisco.

BOX G.E.P., JENKINS G.M., REINSEL G.C. and LJUNG G.M. (2015), "Time Series Analysis:
Forecasting and Control", John Wiley & Sons, Hoboken, N. J., 5th edition.

See Also

x13

Examples

myseries <- ipi_c_eu[, "FR"]
myspec1 <- x13_spec(spec = "RSA5c")
myreg1 <- x13(myseries, spec = myspec1)

To modify a pre-specified model specification
myspec2 <- x13_spec(spec = "RSA5c", tradingdays.option = "WorkingDays")
myreg2 <- x13(myseries, spec = myspec2)

To modify the model specification of a "X13" object
myspec3 <- x13_spec(myreg1, tradingdays.option = "WorkingDays")
myreg3 <- x13(myseries, myspec3)

https://ec.europa.eu/eurostat/cros/content/documentation_en
https://ec.europa.eu/eurostat/cros/content/documentation_en

74 x13_spec

To modify the model specification of a "X13_spec" object
myspec4 <- x13_spec(myspec1, tradingdays.option = "WorkingDays")
myreg4 <- x13(myseries, myspec4)

Pre-specified outliers
myspec1 <- x13_spec(spec = "RSA5c", usrdef.outliersEnabled = TRUE,

usrdef.outliersType = c("LS", "AO"),
usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
usrdef.outliersCoef = c(36, 14),
transform.function = "None")

myreg1 <- x13(myseries, myspec1)
myreg1
s_preOut(myreg1)

User-defined calendar regressors
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var <- ts.union(var1, var2)
myspec1 <- x13_spec(spec = "RSA5c", tradingdays.option = "UserDefined",

usrdef.varEnabled = TRUE,
usrdef.var = var,
usrdef.varType = c("Calendar", "Calendar"))

myreg1 <- x13(myseries, myspec1)
myreg1

myspec2 <- x13_spec(spec = "RSA5c", usrdef.varEnabled = TRUE,
usrdef.var = var1, usrdef.varCoef = 2,
transform.function = "None")

myreg2 <- x13(myseries, myspec2)
s_preVar(myreg2)

Pre-specified ARMA coefficients
myspec1 <- x13_spec(spec = "RSA5c", automdl.enabled = FALSE,

arima.p = 1, arima.q = 1, arima.bp = 0, arima.bq = 1,
arima.coefEnabled = TRUE,
arima.coef = c(-0.8, -0.6, 0),
arima.coefType = c(rep("Fixed", 2), "Undefined"))

s_arimaCoef(myspec1)
myreg1 <- x13(myseries, myspec1)
myreg1

To define a seasonal filter
myspec1 <- x13_spec("RSA5c", x11.seasonalma = rep("S3X1", 12))
mysa1 <- x13(myseries, myspec1)

Index

∗ datasets
ipi_c_eu, 9

add_sa_item, 2, 14

coef, 19
compute, 3, 5
count, 4, 5, 6, 8, 9

get_all_objects (get_object), 7
get_dictionary (jSA), 11
get_indicators, 18, 48, 62
get_indicators (jSA), 11
get_jmodel (get_model), 5
get_jspec (jSA), 11
get_model, 3, 4, 5, 6, 8, 9, 13
get_name, 4, 5, 6, 8, 9
get_object, 7
get_ts, 4–6, 8, 8

ipi_c_eu, 9

jregarima (regarima), 16
jregarima_tramoseats (regarima), 16
jregarima_x13 (regarima), 16
jSA, 5, 11, 18, 48, 62
jSA2R (jSA), 11
jtramoseats (tramoseats), 47
jx13 (x13), 61

load_spec (save_spec), 41
load_workspace, 3, 13, 14, 43
logLik, 19

new_multiprocessing (new_workspace), 13
new_workspace, 13

plot, 14

regarima, 16, 28, 39, 47, 48, 62
regarima_spec_tramoseats, 16, 19, 21, 59

regarima_spec_x13, 16, 19, 31, 73
regarima_tramoseats (regarima), 16
regarima_x13 (regarima), 16
residuals, 19

s_arima, 29, 40
s_arima (specification), 44
s_arimaCoef, 29, 40
s_arimaCoef (specification), 44
s_easter, 29, 39
s_easter (specification), 44
s_estimate, 28, 39
s_estimate (specification), 44
s_fcst, 29, 40
s_fcst (specification), 44
s_out, 29, 39
s_out (specification), 44
s_preOut, 29, 39
s_preOut (specification), 44
s_preVar, 29, 39
s_preVar (specification), 44
s_seats, 59
s_seats (specification), 44
s_span, 29, 40
s_span (specification), 44
s_td, 29, 39
s_td (specification), 44
s_transform, 29, 39
s_transform (specification), 44
s_usrdef, 29, 39
s_usrdef (specification), 44
s_x11, 73
s_x11 (specification), 44
save_spec, 41
save_workspace, 3, 13, 14, 43
specification, 44

tramoseats, 5, 47, 59, 60, 63
tramoseats_spec, 48, 49, 50
ts, 8

75

76 INDEX

user_defined_variables, 12, 47, 60, 61

x13, 5, 49, 60, 61, 73
x13_spec, 61–63, 64

	add_sa_item
	compute
	count
	get_model
	get_name
	get_object
	get_ts
	ipi_c_eu
	jSA
	load_workspace
	new_workspace
	plot
	regarima
	regarima_spec_tramoseats
	regarima_spec_x13
	save_spec
	save_workspace
	specification
	tramoseats
	tramoseats_spec
	user_defined_variables
	x13
	x13_spec
	Index

