Package ‘SBICgraph’

March 2, 2021

Title Structural Bayesian Information Criterion for Graphical Models
Version 1.0.0
Description This is the implementation of the novel structural Bayesian information criterion by Zhou, 2020 (under review).
 In this method, the prior structure is modeled and incorporated into the Bayesian information criterion framework.
 Additionally, we also provide the implementation of a two-step algorithm to generate the candidate model pool.
License GPL-3
Encoding UTF-8
LazyData true
Imports glmnet, MASS, network
RoxygenNote 7.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Quang Nguyen [cre, aut] (<https://orcid.org/0000-0002-2072-3279>),
 Jie Zhou [aut],
 Anne Hoen [aut],
 Jiang Gui [aut]
Maintainer Quang Nguyen <Quang.P.Nguyen.GR@dartmouth.edu>
Repository CRAN
Date/Publication 2021-03-02 19:10:09 UTC

R topics documented:

 addition ... 2
 comparison ... 2
 deletion ... 3
 mle ... 4
 modelset .. 5
addition

Description

This is the enrichment step in the two-step algorithm to construct the model pool (internal use only).

Usage

```r
data, lambda, P
```

Arguments

- `data` An n by p matrix of observations
- `lambda` Vector of tuning parameter
- `P` Prior adjacency matrix

Value

A list of model objects

Author(s)

Jie Zhou

comparison

Description

Comparing the two adjacency matrices for false discovery rate and positive selection rate. Used for model validation.

Usage

```r
real, estimate
```
Arguments

- **real**
 The real matrix $p \times p$ adjacency matrix likely from simulated data

- **estimate**
 The estimated matrix $p \times p$ adjacency matrix likely estimated using the SBIC procedure

Value

A list of the following evaluation metrics

- **PSR**
 Positive Selection Rate

- **FDR**
 False Discovery rate

Author(s)

Jie Zhou

deletion
Pruning step for constructing the model pool

Description

This is the pruning step in the two-step algorithm to construct the model pool (internal use only)

Usage

`deletion(data, lambda, P)`

Arguments

- **data**
 An $n \times p$ matrix of observations

- **lambda**
 Vector of tuning parameter

- **P**
 Prior adjacency matrix

Value

A list of model objects

Author(s)

Jie Zhou
Estimate the precision matrix for multivariate normal distribution with given adjacency matrix using maximum likelihood

Description

This function finds the maximum likelihood estimate of the precision matrix with given adjacency matrix for multivariate normal distribution.

Usage

```r
mle(data, priori)
```

Arguments

- `data` An n by p dataframe representing the observations
- `priori` A p by p matrix representing the given adjacency matrix

Details

The methods are based on the relationship between precision matrix of the multivariate normal distribution and regression coefficients.

Value

Returns a p by p matrix estimate of the precision matrix

Author(s)

Jie Zhou

Examples

```r
set.seed(1)
d=simulate(n=100,p=200, m1=100, m2=30)
data=d$data
priori=d$realnetwork
precision=mle(data=data,priori=priori)
```
Construct model pool using the two-step algorithm

Description

For a given prior graph, the two-step algorithm, including edge enrichment and pruning, is used to construct the model pool.

Usage

\[
\text{modelset}(\text{data}, \lambda, P)
\]

Arguments

- **data**: A n by p data frame of observations
- **\lambda**: Tuning parameter vector
- **P**: Prior adjacency matrix

Value

A list including all the candidate models in the model pool. Each model is represented by a p by p adjacency matrix.

Author(s)

Jie Zhou

Examples

```r
set.seed(1)
d=simulate(n=100, p=100, m1 = 100, m2 = 30)
data=d$data
P=d$priornetwork
\lambda=exp(seq(-5,5,length=100))
candidates=modelset(data=data,lambda=\lambda, P=P)
```
sbic

Structural Bayesian information criterion for multivariate normal data with a given graph structure

Description

This function estimates the novel structural Bayesian information criterion given the data and a given graph structure.

Usage

sbic(data, theta, prob, P)

Arguments

data A n by p dataframe representing observations
theta The p by p matrix representing the given graph structure
prob The expected error rate
P The prior adjacency matrix

Value

The value of sbic with given temperature parameter and prior adjacency matrix

Author(s)

Jie Zhou

Examples

set.seed(1)
d=simulate(n=100, p=100, m1 = 100, m2 = 30)
data=d$data
P=d$priornetwork
theta=d$realnetwork
prob=0.15
index=sbic(data=data, theta=theta, prob=prob, P=P)
Model selection of Gaussian graphical model based on SBIC

Description

Select the model based on the SBIC criterion and the two-step algorithm

Usage

`sggm(data, lambda, M, prob)`

Arguments

data An n by p dataframe representing the observations
lambda A vector of tuning parameters used to build the model pool
M The prior adjacency matrix
prob The mean error rate

Value

A list of objects containing:

networkhat The final selected adjacency matrix
candidates The model pool

Author(s)

Jie Zhou

Examples

```r
set.seed(1)
m1 = 100
m2 = 30
p = 100
n = 100
d=simulate(n=n,p=p, m1 = m1, m2 = m2) # simulate fake data
lambda=exp(seq(-5,5,length=100)) # tuning parameter
data=d$data # data from the simulation
M=d$priornetwork # prior network from simulation
# calculating the error rate
r1=m2/m1
r2=m2/(p*(p-1)/2-m1)
r=(r1+r2)/2
# apply sggm
result=sggm(data=data, lambda=lambda, M=M, prob=r)
# compare the final network and the true network
```
simulate

Randomly generate a adjacency matrix based on which to simulate data

Description

According to a given edge density, first generate the adjacency matrix P of a graph. Based on P, the simulated multivariate normal data is generated with mean zero and a specified given precision matrix.

Usage

simulate(n, p, m1, m2)

Arguments

n Sample size
p The number of vertices in graph or the number of variables
m1 The number of edges in the true graph
m2 The number of elements in adjacency matrix that stay in different states, i.e., 0 or 1, in true and prior graphs

Value

A list including the simulated data, real adjacency matrix and a prior adjacency matrix

data simulated data
realnetwork real adjacency matrix
prionetwork prior adjacency matrix

Author(s)

Jie Zhou

Examples

set.seed(1)
d=simulate(n=100, p=200, m1=100, m2=30)
d$data
d$realnetwork
d$prionetwork
Index

addition, 2
comparison, 2
deletion, 3
mle, 4
modelset, 5
sbic, 6
sggm, 7
simulate, 8