Package ‘causal.decomp’

September 13, 2021

Title Causal Decomposition Analysis
Version 0.0.1
Date 2021-9-7
Depends R (>= 2.10)
Imports stats, parallel, MASS, nnet, SuppDists, CBPS, PSweight, spelling, utils
Description We implement causal decomposition analysis using the methods proposed by Park, Lee, and Qin (2020) <arXiv:2008.12812> and Park, Kang, and Lee (2021+). This package allows researchers to use the multiple-mediator-imputation, single-mediator-imputation, and product-of-coefficients regression methods to estimate the initial disparity, disparity reduction, and disparity remaining. It also allows to make the inference conditional on baseline covariates.
License GPL-2
Encoding UTF-8
RoxygenNote 7.1.1
LazyData true
NeedsCompilation no
Author Suyeon Kang [aut, cre], Soojin Park [aut]
Maintainer Suyeon Kang <skang062@ucr.edu>
Repository CRAN
Date/Publication 2021-09-13 11:40:02 UTC

R topics documented:
causal.decomp .. 2
mmi ... 2
pocr ... 6
sdata ... 8
smi ... 9

Index 15
The causal.decomp package provides three important functions: mmi, smi, and pocr.

mmi

Multiple-Mediator-Imputation Estimation Method

Description

'mmi' is used to estimate the initial disparity, disparity reduction, and disparity remaining for causal decomposition analysis, using the multiple-mediator-imputation estimation method proposed by Park et. al. (2020).

Usage

```r
mmi(
  fit.r = NULL,
  fit.x,
  fit.y,
  treat,
  covariates,
  sims = 100,
  conf.level = 0.95,
  conditional = TRUE,
  cluster = NULL,
  long = FALSE,
  mc.cores = 1L
)
```

Arguments

- `fit.r`: a fitted model object for treatment. Can be of class 'CBPS' or 'SumStat'. Default is 'NULL'. Only necessary if 'conditional' is 'FALSE'.
- `fit.x`: a fitted model object for intermediate confounder(s). Each intermediate model can be of class 'lm', 'glm', 'multinom', or 'polr'. When multiple confounders are considered, can be of class 'list' containing multiple models.
- `fit.y`: a fitted model object for outcome. Can be of class 'lm' or 'glm'.
- `treat`: a character string indicating the name of the treatment variable used in the models. The treatment can be categorical with two or more categories (two- or multi-valued factor).
covariates a vector containing the name of the covariate variable(s) used in the models. Each covariate can be categorical with two or more categories (two- or multi-valued factor) or continuous (numeric).
sims number of Monte Carlo draws for nonparametric bootstrap.
conf.level level of the returned two-sided confidence intervals, which are estimated by the nonparametric percentile bootstrap method. Default is .95, which returns the 2.5 and 97.5 percentiles of the simulated quantities.
conditional a logical value. If 'TRUE', the function will return the estimates conditional on those covariate values; and all covariates in mediator and outcome models need to be centered prior to fitting. Default is 'TRUE'. If 'FALSE', 'fit.r' needs to be specified.
cluster a vector of cluster indicators for the bootstrap. If provided, the cluster bootstrap is used. Default is 'NULL'.
long a logical value. If 'TRUE', the output will contain the entire sets of estimates for all bootstrap samples. Default is 'FALSE'.
mc.cores The number of cores to use. Must be exactly 1 on Windows.

Details

This function returns the point estimates of the initial disparity, disparity reduction, and disparity remaining for a categorical treatment and a variety of types of outcome and mediator(s) in causal decomposition analysis. It also returns nonparametric percentile bootstrap confidence intervals for each estimate.

The initial disparity represents the expected difference in an outcome between a comparison group $R = j$ and a reference group $R = i$ where $i \neq j$. That is,

$$
\tau(i, j) = E\{Y|R = j\} - E\{Y|R = i\},
$$

where R and Y are the group indicator and the outcome variable, respectively. The disparity reduction represents the expected change in an outcome for the group $R = j$ after adjusting the level of mediator(s) to the level of the reference group. That is,

$$
\delta(j) = E\{Y|R = j\} - E\{Y(G_M(i))|R = j\},
$$

where $G_M(i)$ is a random draw from the mediator distribution of the reference group. The disparity remaining represents the remaining disparity for the group $R = j$ even after adjusting the level of mediators to the reference group. Formally,

$$
\zeta(i) = E\{Y(G_M(i))|R = j\} - E\{Y|R = i\}.
$$

The disparity reduction and remaining can be estimated using the multiple-mediator-imputation method suggested by Park et al. (2020). See the references for more details.

If one wants to make the inference conditional on baseline covariates, set 'conditional = T' and center the data before fitting the models.

As of version 0.0.1, the intermediate confounder model ('fit.x') can be of class 'lm', 'glm', 'multinom', or 'polr', corresponding respectively to the linear regression models and generalized linear models, multinomial log-linear models, and ordered response models. The outcome model ('fit.y') can be of class 'lm' or 'glm'. Also, the treatment model ('fit.r') can be of class 'CBPS' or 'Sum-Stat', both of which use the propensity score weighting. It is only necessary when 'conditional = F'.
Value

result

a matrix containing the point estimates of the initial disparity, disparity remaining,
and disparity reduction, and the percentile bootstrap confidence intervals for
each estimate.

all.result

a matrix containing the point estimates of the initial disparity, disparity remain-
ing, and disparity reduction for all bootstrap samples. Returned if `long` is
'TRUE'.

Author(s)

Suyeon Kang, University of California, Riverside, <skang062@ucr.edu>; Soojin Park, University
of California, Riverside, <soojinp@ucr.edu>.

References

Analysis: A Better Practice for Identifying Contributing Factors to Health Disparities".

See Also

smi

Examples

data(sdata)

#---#
Example 1-a: Continuous Outcome
#---#
fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = sdata)
fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = sdata,
 family = binomial(link = "logit"))
require(MASS)
fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = sdata)
fit.s1 <- lm(S ~ R + C.num + C.bin, data = sdata)
require(nnet)
fit.m4 <- multinom(M.cat ~ R + C.num + C.bin, data = sdata)
fit.y1 <- lm(Y.num ~ R + M.num + M.bin + M.cat + S + C.num + C.bin,
 data = sdata)
require(PSweight)
fit.r1 <- SumStat(R ~ C.num + C.bin, data = sdata, weight = "IPW")
require(CBPS)
fit.r2 <- CBPS(R ~ C.num + C.bin, data = sdata, method = "exact",
 standardize = "TRUE")
res.1a <- mmi(fit.r = fit.r1, fit.x = fit.s1,
 fit.y = fit.y1, sims = 40, conditional = FALSE,
Example 1-b: Binary Outcome

```r
fit.y2 <- glm(Y.bin ~ R + M.num + M.bin + M.cat + S + C.num + C.bin, 
data = sdata, family = binomial(link = "logit"))
res.1b <- mmi(fit.r = fit.r1, fit.x = fit.s1, 
fit.y = fit.y2, sims = 40, conditional = FALSE, 
covariates = c("C.num", "C.bin"), treat = "R")
```

Example 2-a: Continuous Outcome, Conditional on Covariates

For conditional = TRUE, need to create data with centered covariates

copy data

```r
sdata.c <- sdata
# center quantitative covariate(s)
sdata.c$C.num <- scale(sdata.c$C.num, center = TRUE, scale = FALSE)
# center binary (or categorical) covariates(s)
# only necessary if the desired baseline level is NOT the default baseline level.
sdata.c$C.bin <- relevel(sdata.c$C.bin, ref = "1")
```

fit mediator and outcome models

```r
fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = sdata.c)
fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = sdata.c, 
family = binomial(link = "logit"))
fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = sdata.c)
fit.s2 <- lm(S ~ R + C.num + C.bin, data = sdata.c)
fit.y1 <- lm(Y.num ~ R + M.num + M.bin + M.cat + S + C.num + C.bin, 
data = sdata.c)
```

```r
res.2a <- mmi(fit.x = fit.s2, 
fit.y = fit.y1, sims = 40, conditional = TRUE, 
covariates = c("C.num", "C.bin"), treat = "R")
```

Example 2-b: Binary Outcome, Conditional on Covariates

```r
fit.y2 <- glm(Y.bin ~ R + M.num + M.bin + M.cat + S + C.num + C.bin, 
data = sdata.c, family = binomial(link = "logit"))
res.2b <- mmi(fit.x = fit.s2, 
fit.y = fit.y2, sims = 40, conditional = TRUE, 
covariates = c("C.num", "C.bin"), treat = "R")
```
Product-of-Coefficients-Regression Estimation Method

Description

'pocr' is used to estimate the initial disparity, disparity reduction, and disparity remaining for causal decomposition analysis, using the product-of-coefficients-regression estimation method proposed by Park et al. (2021+).

Usage

pocr(
 fit.x = NULL,
 fit.m,
 fit.y,
 treat,
 covariates,
 sims = 100,
 conf.level = 0.95,
 cluster = NULL,
 long = FALSE,
 mc.cores = 1L
)

Arguments

fit.x: a fitted model object for intermediate confounder. Can be of class 'lm'. Only necessary if the mediator is categorical. Default is 'NULL'.

fit.m: a fitted model object for mediator. Can be of class 'lm', 'glm', 'multinom', or 'polr'.

treat: a character string indicating the name of the treatment variable used in the models. The treatment can be categorical with two or more categories (two- or multi-valued factor).

covariates: a vector containing the name of the covariate variable(s) used in the models. Each covariate can be categorical with two or more categories (two- or multi-valued factor) or continuous (numeric).

sims: number of Monte Carlo draws for nonparametric bootstrap.

conf.level: level of the returned two-sided confidence intervals, which are estimated by the nonparametric percentile bootstrap method. Default is to return the 2.5 and 97.5 percentiles of the simulated quantities.

cluster: a vector of cluster indicators for the bootstrap. If provided, the cluster bootstrap is used. Default is 'NULL'.

long: a logical value. If 'TRUE', the output will contain the entire sets of estimates for all bootstrap samples. Default is 'FALSE'.

mc.cores: The number of cores to use. Must be exactly 1 on Windows.
Details

This function returns the point estimates of the initial disparity, disparity reduction, and disparity remaining for a categorical treatment and a variety of types of outcome and mediator(s) in causal decomposition analysis. It also returns nonparametric percentile bootstrap confidence intervals for each estimate.

The definition of the initial disparity, disparity reduction, and disparity remaining can be found in help('mmi'). As opposed to the 'mmi' and 'smi' function, this function uses the product-of-coefficients-regression method suggested by Park et al. (2021+). It always make the inference conditional on baseline covariates. Therefore, users need to center the data before fitting the models. See the reference for more details.

As of version 0.0.1, the mediator model ('fit.m') can be of class 'lm', 'glm', 'multinom', or 'polr', corresponding respectively to the linear regression models and generalized linear models, multinomial log-linear models, and ordered response models. The outcome model ('fit.y') can be of class 'lm'. The intermediate confounder model ('fit.x') can also be of class 'lm' and only necessary when the mediator is categorical.

Value

result a matrix containing the point estimates of the initial disparity, disparity remaining, and disparity reduction, and the percentile bootstrap confidence intervals for each estimate.

all.result a matrix containing the point estimates of the initial disparity, disparity remaining, and disparity reduction for all bootstrap samples. Returned if 'long' is 'TRUE'.

Author(s)

Suyeon Kang, University of California, Riverside, <skang062@ucr.edu>; Soojin Park, University of California, Riverside, <soojinp@ucr.edu>.

References

See Also

mmi, smi

Examples

data(sdata)

To be conditional on covariates, first create data with centered covariates
copy data
sdata.c <- sdata
center quantitative covariate(s)
sdata.c$C.num <- scale(sdata.c$C.num, center = TRUE, scale = FALSE)
center binary (or categorical) covariates(s)
only necessary if the desired baseline level is NOT the default baseline level.
sdata.c$C.bin <- relevel(sdata.c$C.bin, ref = "1")

Example 1: Continuous Mediator
fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = sdata.c)
fit.y1 <- lm(Y.num ~ R + M.num + M.num:R + S +
 C.num + C.bin, data = sdata.c)
res1 <- pocr(fit.m = fit.m1, fit.y = fit.y1, sims = 40,
 covariates = c("C.num", "C.bin"), treat = "R")
res1

Example 2: Binary Mediator
fit.s1 <- lm(S ~ R + C.num + C.bin, data = sdata.c)
fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = sdata.c,
 family = binomial(link = "logit"))
fit.y2 <- lm(Y.num ~ R + M.bin + M.bin:R + S +
 C.num + C.bin, data = sdata.c)
res2 <- pocr(fit.x = fit.s1, fit.m = fit.m2, fit.y = fit.y2,
 sims = 40, covariates = c("C.num", "C.bin"), treat = "R")
res2

Example 3: Ordinal Mediator
require(MASS)
fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = sdata.c)
fit.y3 <- lm(Y.num ~ R + M.cat + M.cat:R + S +
 C.num + C.bin, data = sdata.c)
res3 <- pocr(fit.x = fit.s1, fit.m = fit.m3, fit.y = fit.y3,
 sims = 40, covariates = c("C.num", "C.bin"), treat = "R")
res3

Example 4: Nominal Mediator
require(nnet)
fit.m4 <- multinom(M.cat ~ R + C.num + C.bin, data = sdata.c)
res4 <- pocr(fit.x = fit.s1, fit.m = fit.m4, fit.y = fit.y3,
 sims = 40, covariates = c("C.num", "C.bin"), treat = "R")
res4

sdata

Synthetic Data for Illustration

Description

A randomly generated dataset containing 1000 rows and 9 columns with no missing values.
smi

Usage
sdata

Format
A data frame containing the following variables. The data are provided only for explanatory purposes. The mediators are assumed to be independent of each other.

C.num: A quantitative covariate.
C.bin: A binary covariate with a value of 0 or 1.
R: A group indicator with four levels.
S: A quantitative intermediate confounder between a mediator and the outcome.
M.num: A quantitative mediator.
M.bin: A binary mediator with a value of 0 or 1.
M.cat: A categorical mediator with three levels.
Y.num: A quantitative outcome.
Y.bin: A binary outcome with a value of 0 or 1.

Details
Note that all the variables are randomly generated using the dataset used in Park et al. (2021+).

References

smi Single-Mediator-Imputation Estimation Method

Description
'smi' is used to estimate the initial disparity, disparity reduction, and disparity remaining for causal decomposition analysis, using the single-mediator-imputation estimation method proposed by Park et al. (2021+).

Usage
smi(
 fit.r = NULL,
 fit.m,
 fit.y,
 treat,
 covariates,
 sims = 100,
)
conf.level = 0.95,
conditional = TRUE,
cluster = NULL,
long = FALSE,
mc.cores = 1L
)

Arguments

fit.r a fitted model object for treatment. Can be of class ‘CBPS’ or ‘SumStat’. Default is ‘NULL’. Only necessary if ‘conditional’ is ‘FALSE’.
fit.m a fitted model object for mediator. Can be of class ‘lm’, ‘glm’, ‘multinom’, or ‘polr’.
fit.y a fitted model object for outcome. Can be of class ‘lm’ or ‘glm’.
treat a character string indicating the name of the treatment variable used in the models. The treatment can be categorical with two or more categories (two- or multi-valued factor).
covariates a vector containing the name of the covariate variable(s) used in the models. Each covariate can be categorical with two or more categories (two- or multi-valued factor) or continuous (numeric).
sims number of Monte Carlo draws for nonparametric bootstrap.
conf.level level of the returned two-sided confidence intervals, which are estimated by the nonparametric percentile bootstrap method. Default is .95, which returns the 2.5 and 97.5 percentiles of the simulated quantities.
conditional a logical value. If ‘TRUE’, the function will return the estimates conditional on those covariate values; and all covariates in mediator and outcome models need to be centered prior to fitting. Default is ‘TRUE’. If ‘FALSE’, ‘fit.r’ needs to be specified.
cluster a vector of cluster indicators for the bootstrap. If provided, the cluster bootstrap is used. Default is ‘NULL’.
long a logical value. If ‘TRUE’, the output will contain the entire sets of estimates for all bootstrap samples. Default is ‘FALSE’.
mc.cores The number of cores to use. Must be exactly 1 on Windows.

Details

This function returns the point estimates of the initial disparity, disparity reduction, and disparity remaining for a categorical treatment and a variety of types of outcome and mediator(s) in causal decomposition analysis. It also returns nonparametric percentile bootstrap confidence intervals for each estimate.

The definition of the initial disparity, disparity reduction, and disparity remaining can be found in help(‘mmi’). As opposed to the ‘mmi’ function, this function uses the single-mediator-imputation method suggested by Park et al. (2021+). See the reference for more details.

If one wants to make the inference conditional on baseline covariates, set ‘conditional = T’ and center the data before fitting the models.
As of version 0.0.1, the mediator model ('fit.m') can be of class 'lm', 'glm', 'multinom', or 'polr', corresponding respectively to the linear regression models and generalized linear models, multinomial log-linear models, and ordered response models. The outcome model ('fit.y') can be of class 'lm' or 'glm'. Also, the treatment model ('fit.r') can be of class 'CBPS' or 'SumStat', both of which use the propensity score weighting. It is only necessary when 'conditional = F'.

Value

result a matrix containing the point estimates of the initial disparity, disparity remaining, and disparity reduction, and the percentile bootstrap confidence intervals for each estimate.

all.result a matrix containing the point estimates of the initial disparity, disparity remaining, and disparity reduction for all bootstrap samples. Returned if 'long' is 'TRUE'.

Author(s)

Suyeon Kang, University of California, Riverside, <skang062@ucr.edu>; Soojin Park, University of California, Riverside, <soojinp@ucr.edu>.

References

See Also

mmi

Examples

data(sdata)

Example 1-a: Continuous Outcome
#---#
require(PSweight)
fit.r1 <- SumStat(R ~ C.num + C.bin, data = sdata, weight = "IPW")
require(CBPS)
fit.r2 <- CBPS(R ~ C.num + C.bin, data = sdata, method = "exact", standardize = "TRUE")

Continuous mediator
fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = sdata)
fit.y1 <- lm(Y.num ~ R + M.num + S + C.num + C.bin, data = sdata)
res.1a1 <- smi(fit.r = fit.r1, fit.m = fit.m1,
 fit.y = fit.y1, sims = 40, conditional = FALSE, covariates = c("C.num", "C.bin"), treat = "R")
res.1a1

Binary mediator
fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = sdata,
family = binomial(link = "logit"))
fit.y2 <- lm(Y.num ~ R + M.bin + S + C.num + C.bin, data = sdata)
res.1a2 <- smi(fit.r = fit.r1, fit.m = fit.m2,
fit.y = fit.y2, sims = 40, conditional = FALSE,
covariates = c("C.num", "C.bin"), treat = "R")
res.1a2

Categorical mediator
require(MASS)
fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = sdata)
fit.y3 <- lm(Y.num ~ R + M.cat + S + C.num + C.bin, data = sdata)
res.1a3 <- smi(fit.r = fit.r1, fit.m = fit.m3,
fit.y = fit.y3, sims = 40, conditional = FALSE,
covariates = c("C.num", "C.bin"), treat = "R")
res.1a3

require(nnet)
fit.m4 <- multinom(M.cat ~ R + C.num + C.bin, data = sdata)
res.1a4 <- smi(fit.r = fit.r1, fit.m = fit.m4,
fit.y = fit.y3, sims = 40, conditional = FALSE,
covariates = c("C.num", "C.bin"), treat = "R")
res.1a4

Example 1-b: Binary Outcome
#---#
Continuous mediator
fit.y1 <- glm(Y.bin ~ R + M.num + S + C.num + C.bin,
data = sdata, family = binomial(link = "logit"))
res.1b1 <- smi(fit.r = fit.r1, fit.m = fit.m1,
fit.y = fit.y1, sims = 40, conditional = FALSE,
covariates = c("C.num", "C.bin"), treat = "R")
res.1b1

Binary mediator
fit.y2 <- glm(Y.bin ~ R + M.bin + S + C.num + C.bin,
data = sdata, family = binomial(link = "logit"))
res.1b2 <- smi(fit.r = fit.r1, fit.m = fit.m2,
fit.y = fit.y2, sims = 40, conditional = FALSE,
covariates = c("C.num", "C.bin"), treat = "R")
res.1b2

Categorical mediator
fit.y3 <- glm(Y.bin ~ R + M.cat + S + C.num + C.bin,
data = sdata, family = binomial(link = "logit"))
res.1b3 <- smi(fit.r = fit.r1, fit.m = fit.m3,
fit.y = fit.y3, sims = 40, conditional = FALSE,
covariates = c("C.num", "C.bin"), treat = "R")
res.1b3
res.1b4 <- smi(fit.r = fit.r1, fit.m = fit.m4,
fit.y = fit.y3, sims = 40, conditional = FALSE,
covariates = c("C.num", "C.bin"), treat = "R")
res.1b4

Example 2-a: Continuous Outcome, Conditional on Covariates
For conditional = T, need to create data with centered covariates
copy data
data.c <- data
data.c$C.num <- scale(data.c$C.num, center = TRUE, scale = FALSE)
data.c$C.bin <- relevel(data.c$C.bin, ref = "1")

Continuous mediator
fit.y1 <- lm(Y.num ~ R + M.num + S + C.num + C.bin, data = data.c)
fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = data.c)
res.2a1 <- smi(fit.m = fit.m1,
 fit.y = fit.y1, sims = 40, conditional = TRUE,
 covariates = c("C.num", "C.bin"), treat = "R")
res.2a1

Binary mediator
fit.y2 <- glm(Y.bin ~ R + M.num + S + C.num + C.bin, data = data.c,
 family = binomial(link = "logit"))
fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = data.c,
 family = binomial(link = "logit"))
res.2a2 <- smi(fit.m = fit.m2,
 fit.y = fit.y2, sims = 40, conditional = TRUE,
 covariates = c("C.num", "C.bin"), treat = "R")
res.2a2

Categorical mediator
fit.y3 <- lm(Y.num ~ R + M.cat + S + C.num + C.bin, data = data.c)
fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = data.c)
res.2a3 <- smi(fit.m = fit.m3,
 fit.y = fit.y3, sims = 40, conditional = TRUE,
 covariates = c("C.num", "C.bin"), treat = "R")
res.2a3

fit.m4 <- multinom(M.cat ~ R + C.num + C.bin, data = data.c)
res.2a4 <- smi(fit.m = fit.m4,
 fit.y = fit.y3, sims = 40, conditional = TRUE,
 covariates = c("C.num", "C.bin"), treat = "R")
res.2a4

Example 2-b: Binary Outcome, Conditional on Covariates
Continuous mediator
fit.y1 <- glm(Y.bin ~ R + M.num + S + C.num + C.bin, data = data.c,
 family = binomial(link = "logit"))
res.2b1 <- smi(fit.m = fit.m1,
fit.y = fit.y1, sims = 40, conditional = TRUE,
covariates = c("C.num", "C.bin"), treat = "R")
res.2b1

Binary mediator
fit.y2 <- glm(Y.bin ~ R + M.bin + S + C.num + C.bin,
data = sdata.c, family = binomial(link = "logit"))
res.2b2 <- smi(fit.m = fit.m2,
 fit.y = fit.y2, sims = 40, conditional = TRUE,
covariates = c("C.num", "C.bin"), treat = "R")
res.2b2

Categorical mediator
fit.y3 <- glm(Y.bin ~ R + M.cat + S + C.num + C.bin,
data = sdata.c, family = binomial(link = "logit"))
res.2b3 <- smi(fit.m = fit.m3,
 fit.y = fit.y3, sims = 40, conditional = TRUE,
covariates = c("C.num", "C.bin"), treat = "R")
res.2b3

res.2b4 <- smi(fit.m = fit.m4,
 fit.y = fit.y3, sims = 40, conditional = TRUE,
covariates = c("C.num", "C.bin"), treat = "R")
res.2b4
Index

* datasets
 sdata, 8

causal.decomp, 2

mmi, 2, 7, 11

pocr, 6

sdata, 8

smi, 4, 7, 9