metropolis: The Metropolis Algorithm

Learning and using the Metropolis algorithm for Bayesian fitting of a generalized linear model. The package vignette includes examples of hand-coding a logistic model using several variants of the Metropolis algorithm. The package also contains R functions for simulating posterior distributions of Bayesian generalized linear model parameters using guided, adaptive, guided-adaptive and random walk Metropolis algorithms. The random walk Metropolis algorithm was originally described in Metropolis et al (1953); <doi:10.1063/1.1699114>.

Version: 0.1.8
Depends: coda, R (≥ 3.5.0)
Imports: stats
Suggests: knitr, markdown
Published: 2020-09-21
Author: Alexander Keil [aut, cre]
Maintainer: Alexander Keil <akeil at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Language: en-US
Materials: README NEWS
CRAN checks: metropolis results


Reference manual: metropolis.pdf
Vignettes: The metropolis algorithm for fitting Bayesian GLMs
Package source: metropolis_0.1.8.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: metropolis_0.1.8.tgz, r-oldrel: metropolis_0.1.8.tgz
Old sources: metropolis archive


Please use the canonical form to link to this page.