mixComp: Estimation of Order of Mixture Distributions

Methods for estimating the order of a mixture model. The approaches considered are based on the following papers (extensive list of references is available in the vignette): 1. Dacunha-Castelle, Didier, and Elisabeth Gassiat. The estimation of the order of a mixture model. Bernoulli 3, no. 3 (1997): 279-299. <https://projecteuclid.org/download/pdf_1/euclid.bj/1177334456>. 2. Woo, Mi-Ja, and T. N. Sriram. Robust estimation of mixture complexity. Journal of the American Statistical Association 101, no. 476 (2006): 1475-1486. <doi:10.1198/016214506000000555>. 3. Woo, Mi-Ja, and T. N. Sriram. Robust estimation of mixture complexity for count data. Computational statistics & data analysis 51, no. 9 (2007): 4379-4392. <doi:10.1016/j.csda.2006.06.006>. 4. Umashanger, T., and T. N. Sriram. L2E estimation of mixture complexity for count data. Computational statistics & data analysis 53, no. 12 (2009): 4243-4254. <doi:10.1016/j.csda.2009.05.013>. 5. Karlis, Dimitris, and Evdokia Xekalaki. On testing for the number of components in a mixed Poisson model. Annals of the Institute of Statistical Mathematics 51, no. 1 (1999): 149-162. <doi:10.1023/A:1003839420071>. 6. Cutler, Adele, and Olga I. Cordero-Brana. Minimum Hellinger Distance Estimation for Finite Mixture Models. Journal of the American Statistical Association 91, no. 436 (1996): 1716-1723. <doi:10.2307/2291601>. A number of datasets are included. 1. accidents, from Karlis, Dimitris, and Evdokia Xekalaki. On testing for the number of components in a mixed Poisson model. Annals of the Institute of Statistical Mathematics 51, no. 1 (1999): 149-162. <doi:10.1023/A:1003839420071>. 2. acidity, from Sybil L. Crawford, Morris H. DeGroot, Joseph B. Kadane & Mitchell J. Small (1992) Modeling Lake-Chemistry Distributions: Approximate Bayesian Methods for Estimating a Finite-Mixture Model, Technometrics, 34:4, 441-453. <doi:10.1080/00401706.1992.10484955>. 3. children, from Thisted, R. A. (1988). Elements of statistical computing: Numerical computation (Vol. 1). CRC Press. 4. faithful, from R package "datasets"; Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser. Applied Statistics, 39, 357–365. <https://www.jstor.org/stable/2347385>. 5. shakespeare, from Efron, Bradley, and Ronald Thisted. "Estimating the number of unseen species: How many words did Shakespeare know?." Biometrika 63.3 (1976): 435-447. <doi:10.1093/biomet/63.3.435>.

Version: 0.1-2
Depends: R (≥ 3.5.0)
Imports: cluster, boot, expm, matrixcalc, Rsolnp, kdensity
Suggests: knitr, rmarkdown
Published: 2021-02-25
Author: Anja Weigel [aut], Yulia Kulagina [aut, cre], Fadoua Balabdaoui [aut, ths], Lilian Mueller [ctb], Martin Maechler ORCID iD [ctb] (package 'nor1mix' as model)
Maintainer: Yulia Kulagina <yulia.kulagina at stat.math.ethz.ch>
License: GPL-3
NeedsCompilation: no
CRAN checks: mixComp results

Downloads:

Reference manual: mixComp.pdf
Vignettes: %\VignetteEngine{knitr::rmarkdown}mixComp Vignette
Package source: mixComp_0.1-2.tar.gz
Windows binaries: r-devel: mixComp_0.1-2.zip, r-release: mixComp_0.1-2.zip, r-oldrel: mixComp_0.1-2.zip
macOS binaries: r-release: mixComp_0.1-2.tgz, r-oldrel: mixComp_0.1-1.tgz
Old sources: mixComp archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mixComp to link to this page.