Package ‘picasso’

February 21, 2019

Type Package
Title Pathwise Calibrated Sparse Shooting Algorithm
Version 1.3.1
Date 2019-02-10
Author Jason Ge, Xingguo Li, Haoming Jiang, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer Jason Ge <jiange@princeton.edu>
Depends R (>= 2.15.0), MASS, Matrix
Imports methods
Description Computationally efficient tools for fitting generalized linear model with convex or non-convex penalty. Users can enjoy the superior statistical property of non-convex penalty such as SCAD and MCP which has significantly less estimation error and overfitting compared to convex penalty such as lasso and ridge. Computation is handled by multi-stage convex relaxation and the Pathwise CAlibrated Sparse Shooting algOrithm (PI-CASSO) which exploits warm start initialization, active set updating, and strong rule for coordinate preselection to boost computation, and attains a linear convergence to a unique sparse local optimum with optimal statistical properties. The computation is memory-optimized using the sparse matrix output.
License GPL-3
Repository CRAN
NeedsCompilation yes
Date/Publication 2019-02-21 21:20:18 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>picasso-package</td>
<td>2</td>
</tr>
<tr>
<td>coef.gaussian</td>
<td>3</td>
</tr>
<tr>
<td>coef.logit</td>
<td>3</td>
</tr>
<tr>
<td>coef.poisson</td>
<td>4</td>
</tr>
<tr>
<td>coef.sqrtlasso</td>
<td>5</td>
</tr>
<tr>
<td>eyedata</td>
<td>5</td>
</tr>
<tr>
<td>picasso</td>
<td>6</td>
</tr>
<tr>
<td>plot.gaussian</td>
<td>11</td>
</tr>
</tbody>
</table>
Description

This package provides computationally efficient tools for fitting generalized linear model with convex and non-convex penalty. Users can enjoy the superior statistical property of non-convex penalty such as SCAD and MCP which has significantly less estimation error and overfitting compared to convex penalty such as l1 and ridge. Computation is handled by multi-stage convex relaxation and the Pathwise CALibrated Sparse Shooting Algorithm (PICASSO) which exploits warm start initialization, active set updating, and strong rule for coordinate preselection to boost computation, and attains a linear convergence to a unique sparse local optimum with optimal statistical properties. The computation is memory-optimized using the sparse matrix output.

Details

Package: picasso
Type: Package
Version: 0.5.4
Date: 2016-09-20
License: GPL-2

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

picasso
coef.gaussian

Extract Model Coefficients for an object with S3 class "gaussian"

Description

Extract estimated regression coefficient vectors from the solution path.

Usage

```r
## S3 method for class 'gaussian'
coef(object, lambda.idx = c(1:3), beta.idx = c(1:3), ...)
```

Arguments

- `object` An object with S3 class "gaussian"
- `lambda.idx` The indices of the regularization parameters in the solution path to be displayed. The default values are `c(1:3)`.
- `beta.idx` The indices of the estimate regression coefficient vectors in the solution path to be displayed. The default values are `c(1:3)`.
- `...` Arguments to be passed to methods.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

[picasso](https://CRAN.R-project.org/package=picasso) and [picasso-package](https://CRAN.R-project.org/package=picasso).

coeef.logit

Extract Model Coefficients for an object with S3 class "logit"

Description

Extract estimated regression coefficient vectors from the solution path.

Usage

```r
## S3 method for class 'logit'
coef(object, lambda.idx = c(1:3), beta.idx = c(1:3), ...)
```
Arguments

- **object**: An object with S3 class "logit"
- **lambda.idx**: The indices of the regularization parameters in the solution path to be displayed. The default values are c(1:S).
- **beta.idx**: The indices of the estimate regression coefficient vectors in the solution path to be displayed. The default values are c(1:S).
- **...**: Arguments to be passed to methods.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

- **picasso** and **picasso-package**.

coef.poisson

*Extract Model Coefficients for an object with S3 class "poisson"

Description

Extract estimated regression coefficient vectors from the solution path.

Usage

```r
## S3 method for class 'poisson'
coef(object, lambda.idx = c(1:S), beta.idx = c(1:S), ...)
```

Arguments

- **object**: An object with S3 class "poisson"
- **lambda.idx**: The indices of the regularization parameters in the solution path to be displayed. The default values are c(1:S).
- **beta.idx**: The indices of the estimate regression coefficient vectors in the solution path to be displayed. The default values are c(1:S).
- **...**: Arguments to be passed to methods.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

- **picasso** and **picasso-package**.
coef.srtlasso

Extract Model Coefficients for an object with S3 class "srtlasso"

Description

Extract estimated regression coefficient vectors from the solution path.

Usage

```r
## S3 method for class 'srtlasso'
coef(object, lambda.idx = c(1:3), beta.idx = c(1:3), ...)
```

Arguments

- `object`: An object with S3 class "srtlasso"
- `lambda.idx`: The indices of the regularization parameters in the solution path to be displayed. The default values are `c(1:3)`.
- `beta.idx`: The indices of the estimate regression coefficient vectors in the solution path to be displayed. The default values are `c(1:3)`.
- `...`: Arguments to be passed to methods.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

[picasso](https://CRAN.R-project.org/package=picasso) and [picasso-package](https://CRAN.R-project.org/package=picasso).

eyedata

The Bardet-Biedl syndrome Gene expression data from Scheetz et al. (2006)

Description

Gene expression data (20 genes for 120 samples) from the microarray experiments of mammalian-eye tissue samples of Scheetz et al. (2006).

Usage

```r
data(eyedata)
```
Format

The format is a list containing a matrix and a vector. 1. x - an 120 by 200 matrix, which represents the data of 120 rats with 200 gene probes. 2. y - a 120-dimensional vector of, which represents the expression level of TRIM32 gene.

Details

This data set contains 120 samples with 200 predictors

Author(s)

Xingguo Li, Tuo Zhao, Tong Zhang and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

References

See Also

picasso-package.

Examples

data(eyedata)
image(x)

picasso
PathwlsCAlibrated Sparse Shooting algOrithm (PICASSO)

Description

The function "picasso" implements the user interface.

Usage

picasso(X, Y, lambda = NULL, nlamda = 100, lambda.min.ratio = 0.05, family = "gaussian", method = "l1", type.gaussian = "naive", gamma = 3, df = NULL, standardize = TRUE, intercept = TRUE, prec = 1e-07, max.ite = 1000, verbose = FALSE)
Arguments

\(X\) is an \(n\) by \(d\) design matrix where \(n\) is the sample size and \(d\) is the data dimension.

\(Y\) is the \(n\) dimensional response vector. \(Y\) is numeric vector for family="gaussian", and family="sqrtlasso", or a two-level factor for family="binomial", or a non-negative integer vector representing counts for family="gaussian".

\(\lambda\) is a sequence of decreasing positive values to control the regularization. Typical usage is to leave the input \(\lambda\) = NULL and have the program compute its own \(\lambda\) sequence based on \(n\lambda\) and \(\lambda_{\text{min}}\). Users can also specify a sequence to override this. Default value is from \(\lambda_{\text{max}}\) to \(\lambda_{\text{min}}\) in log scale. The default value is \(\lambda_{\text{max}}\) to \(\lambda_{\text{min}}\) in log scale. The default value is \(\lambda_{\text{max}}\).

\(\text{lambda.min.nratio}\) is the smallest value for \(\lambda\), as a fraction of the upperbound (MAX) of the regularization parameter. The program can automatically generate \(\lambda\) as a sequence of length = \(n\lambda\) starting from MAX to \(\lambda_{\text{min}}\) in log scale. The default value is \(0.05\). Caution: logistic and poisson regression can be ill-conditioned if \(\lambda\) is too small for nonconvex penalty. We suggest the user to avoid using any \(\lambda_{\text{min}}.\)ratio smaller than \(0.05\) for logistic/poisson regression under nonconvex penalty.

\(\text{family}\) is the family of the problem. Sparse linear regression and sparse multivariate regression is applied if family = "gaussian", sqrt lasso is applied if family = "sqrtlasso", sparse logistic regression is applied if family = "binomial" and sparse poisson regression is applied if family = "poisson". The default value is "gaussian".

\(\text{method}\) is the method used for regularization. Lasso is applied if method = "l1", MCP is applied if method = "mcp" and SCAD Lasso is applied if method = "scad". The default value is "l1".

\(\text{type.gaussian}\) is the type of updating residuals in sparse linear regression. The naive update rule is applied if opt = "naive", and the covariance update rule is applied if opt = "covariance". The default value is "naive".

\(\text{gamma}\) is the concavity parameter for MCP and SCAD. The default value is 3.

\(\text{df}\) is the degree of freedom for the covariance update. The default value is \(2n\).

\(\text{standardize}\) is whether the design matrix \(X\) will be standardized to have mean zero and unit standard deviation if standardize = TRUE. The default value is TRUE.

\(\text{intercept}\) is whether the model has intercept term or not. Default value is TRUE.

\(\text{prec}\) is the stopping precision. The default value is 1e-7.

\(\text{max.ite}\) is the maximum number of iterations for the algorithm. The default value is 1000.

\(\text{verbose}\) is whether tracing information is disabled if verbose = FALSE. The default value is FALSE.

Details

For sparse linear regression,
\[
\min_{\beta} \frac{1}{2n} ||Y - X\beta - \beta_0||_2^2 + \lambda R(\beta),
\]

where \(R(\beta) \) can be \(\ell_1 \) norm, MCP, SCAD regularizers.

For sparse logistic regression,
\[
\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left[\log(1 + e^{x_i^T \beta + \beta_0}) - y_i x_i^T \beta \right] + \lambda R(\beta),
\]

where \(R(\beta) \) can be \(\ell_1 \) norm, MCP, and SCAD regularizers.

For sparse poisson regression,
\[
\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left(e^{x_i^T \beta + \beta_0} - y_i (x_i^T \beta + \beta_0) \right) + \lambda R(\beta),
\]

where \(R(\beta) \) can be \(\ell_1 \) norm, MCP or SCAD regularizers.

Value

An object with S3 classes "gaussian", "binomial", and "poisson" corresponding to sparse linear regression, sparse logistic regression, and sparse poisson regression respectively is returned:

- **beta**: A matrix of regression estimates whose columns correspond to regularization parameters for sparse linear regression and sparse logistic regression. A list of matrices of regression estimation corresponding to regularization parameters for sparse column inverse operator.
- **intercept**: The value of intercepts corresponding to regularization parameters for sparse linear regression, and sparse logistic regression.
- **y**: The value of \(y \) used in the program.
- **x**: The value of \(x \) used in the program.
- **lambda**: The sequence of regularization parameters used in the program.
- **nlambda**: The number of values used in lambda.
- **family**: The family from the input.
- **method**: The method from the input.
- **path**: A list of \(d \) by \(d \) adjacency matrices of estimated graphs as a graph path corresponding to lambda.
- **sparsity**: The sparsity levels of the graph path for sparse inverse column operator.
- **standardize**: The standardize from the input.
- **df**: The degree of freecom (number of nonzero coefficients) along the solution path for sparse linear regression, and sparse logistic regression.
- **ite**: A list of vectors where the i-th entries of ite[1] and ite[2] correspond to the outer iteration and inner iteration of i-th regularization parameter respectively.
- **verbose**: The verbose from the input.
Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

References

See Also

picasso-package.

Examples

```r
# Sparse linear regression
n = 100  # sample number
d = 80   # sample dimension
c = 0.5  # correlation parameter
s = 20   # support size of coefficient
set.seed(2016)
X = scale(matrix(rnorm(n*d), n, d) + c*rnorm(n))/sqrt(n)*sqrt(n)
beta = c(rnorm(s), rep(0, d-s))

# Generate response using Gaussian noise, and fit sparse linear models
noise = rnorm(n)
Y = X%*%beta + noise

# l1 regularization solved with naive update
fitted.l1.naive = picasso(X, Y, nlambda=100, type.gaussian="naive")

# l1 regularization solved with covariance update
fitted.l1.covariance = picasso(X, Y, nlambda=100, type.gaussian="covariance")

# mcp regularization
fitted.mcp = picasso(X, Y, nlambda=100, method="mcp")

# scad regularization
fitted.scad = picasso(X, Y, nlambda=100, method="scad")
```
lambdas used
print(fitted.l1.naive$lambda)

number of nonzero coefficients for each lambda
print(fitted.l1.naive$df)

coefficients and intercept for the i-th lambda
i = 30
print(fitted.l1.naive$lambda[i])
print(fitted.l1.naive$beta[,i])
print(fitted.l1.naive$intercept[i])

Visualize the solution path
plot(fitted.l1.naive)
plot(fitted.l1.covariance)
plot(fitted.mcp)
plot(fitted.scad)

##

sparse logistic regression
generate the design matrix and regression coefficient vector
n <- 100 # sample number
d <- 80 # sample dimension
c <- 0.5 # parameter controlling the correlation between columns of X
s <- 20 # support size of coefficient
set.seed(2016)
X <- scale(matrix(rnorm(n*d),n,d)+c*rnorm(n))/sqrt(n-1)*sqrt(n)
beta <- c(runif(s), rep(0, d-s))

Generate response and fit sparse logistic models
p = 1/(1+exp(-XX%*%beta))
Y = rbinom(n, rep(1,n), p)

l1 regularization
fitted.l1 = picasso(X, Y, nlambda=100, family="binomial", method="l1")

mcp regularization
fitted.mcp = picasso(X, Y, nlambda=100, family="binomial", method="mcp")

scad regularization
fitted.scad = picasso(X, Y, nlambda=100, family="binomial", method="scad")

lambdas used
print(fitted.l1$lambda)

number of nonzero coefficients for each lambda
print(fitted.l1$df)

coefficients and intercept for the i-th lambda
i = 30
print(fitted.l1$lambda[i])
print(fitted.l1$beta[,i])
print(fitted.l1$intercept[i])

Visualize the solution path
plot(fitted.l1)

Estimate of Bernoulli parameters
param.l1 = fitted.l1$p

###
Sparse poisson regression
Generate the design matrix and regression coefficient vector
n <- 100 # sample number
d <- 80 # sample dimension
c <- 0.5 # parameter controlling the correlation between columns of X
s <- 20 # support size of coefficient
set.seed(2016)
X <- scale(matrix(rnorm(n*d),n,d)+c*rnorm(n))/sqrt(n-1)*sqrt(n)
beta <- c(runif(s), rep(0, d-s))/sqrt(s)

Generate response and fit sparse poisson models
p = X%*%beta+rnorm(n)
Y = rpois(n, exp(p))

l1 regularization
fitted.l1 = picasso(X, Y, nlambda=100, family="poisson", method="l1")

mcp regularization
fitted.mcp = picasso(X, Y, nlambda=100, family="poisson", method="mcp")

scad regularization
fitted.scad = picasso(X, Y, nlambda=100, family="poisson", method="scad")

lambdas used
print(fitted.l1$lambda)

number of nonzero coefficients for each lambda
print(fitted.l1$df)

coefficients and intercept for the i-th lambda
i = 30
print(fitted.l1$lambda[i])
print(fitted.l1$beta[,i])
print(fitted.l1$intercept[i])

Visualize the solution path
plot(fitted.l1)
Description

Visualize the solution path of regression estimate corresponding to regularization parameters.

Usage

S3 method for class 'gaussian'
plot(x, ...)

Arguments

x An object with S3 class "gaussian".
...
Arguments to be passed to methods.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

picasso and picasso-package.

plot.logit

Plot Function for "logit"

Description

Visualize the solution path of regression estimate corresponding to regularization parameters.

Usage

S3 method for class 'logit'
plot(x, ...)

Arguments

x An object with S3 class "logit".
...
Arguments to be passed to methods.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

picasso and picasso-package.
plot.poisson
Plot Function for "poisson"

Description

Visualize the solution path of regression estimate corresponding to regularization parameters.

Usage

```
## S3 method for class 'poisson'
plot(x, ...)
```

Arguments

- `x` An object with S3 class "poisson".
- `...` Arguments to be passed to methods.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

`picasso` and `picasso-package`.

plot.sqrtlasso
Plot Function for "sqrtlasso"

Description

Visualize the solution path of regression estimate corresponding to regularization parameters.

Usage

```
## S3 method for class 'sqrtlasso'
plot(x, ...)
```

Arguments

- `x` An object with S3 class "sqrtlasso".
- `...` Arguments to be passed to methods.
Author(s)
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also
picasso and picasso-package.

predict.gaussian Prediction for an object with S3 class "gaussian"

Description
Predicting responses of the given design data.

Usage
S3 method for class 'gaussian'
predict(object, newdata, lambda.idx = c(1:S), Y.pred.idx = c(1:U), ...)

Arguments
object An object with S3 class "gaussian"
newdata An optional data frame in which to look for variables with which to predict. If
 omitted, the training data of the are used.
lambda.idx The indices of the regularizaiton parameters in the solution path to be displayed.
 The default values are c(1:3).
Y.pred.idx The indices of the predicted response vectors in the solution path to be displayed.
 The default values are c(1:5).
... Arguments to be passed to methods.

Details
predict.gaussian produces predicted values of the responses of the newdata from the estimated
beta values in the object, i.e.
\[\hat{Y} = \hat{\beta}_0 + X_{new}\hat{\beta}. \]

Value
Y.pred The predicted response vectors based on the estimated models.

Author(s)
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>
predict.logit

See Also

picasso and picasso-package.

predict.logit Prediction for an object with S3 class "logit"

Description

Predicting responses of the given design data.

Usage

S3 method for class 'logit'
predict(object, newdata, lambda.idx = c(1:3), p.pred.idx = c(1:5), ...)

Arguments

- object: An object with S3 class "logit"
- newdata: An optional data frame in which to look for variables with which to predict. If omitted, the training data of the are used.
- lambda.idx: The indices of the regularization parameters in the solution path to be displayed. The default values are c(1:3).
- p.pred.idx: The indices of the predicted response vectors in the solution path to be displayed. The default values are c(1:5).
- ...: Arguments to be passed to methods.

Details

predict.logit produces predicted values of the responses of the newdata from the estimated beta values in the object, i.e.

\[\hat{p} = \frac{e^{\hat{\beta}_0 + X_{new}^T \hat{\beta}}}{1 + e^{\hat{\beta}_0 + X_{new}^T \hat{\beta}}} \]

Value

- p.pred: The predicted response vectors based on the estimated models.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao

Maintainer: Jason Ge <jiange@princeton.edu>

See Also

picasso and picasso-package.
Description

Predicting responses of the given design data.

Usage

```r
## S3 method for class 'poisson'
predict(object, newdata, lambda.idx = c(1:3), p.pred.idx = c(1:5), ...)
```

Arguments

- `object`: An object with S3 class "poisson"
- `newdata`: An optional data frame in which to look for variables with which to predict. If omitted, the training data of the are used.
- `lambda.idx`: The indices of the regularization parameters in the solution path to be displayed. The default values are `c(1:3)`.
- `p.pred.idx`: The indices of the predicted response vectors in the solution path to be displayed. The default values are `c(1:5)`.
- `...`: Arguments to be passed to methods.

Details

`predict.poisson` produces predicted response mean (which is also the parameter for poisson distribution) for the `newdata` from the estimated `beta` values in the `object`, i.e.

\[\hat{p} = e^{\hat{\beta}_0 + X_{\text{new}}\hat{\beta}}. \]

Value

- `p.pred`: The predicted response mean vectors based on the estimated models.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

`picasso` and `picasso-package`.

predict.sqrtlasso

Prediction for an object with S3 class "sqrtlasso"

Description

Predicting responses of the given design data.

Usage

S3 method for class 'sqrtlasso'
predict(object, newdata, lambda.idx = c(1:3), Y.pred.idx = c(1:5), ...)

Arguments

- **object**: An object with S3 class "sqrtlasso"
- **newdata**: An optional data frame in which to look for variables with which to predict. If omitted, the training data of the are used.
- **lambda.idx**: The indices of the regularization parameters in the solution path to be displayed. The default values are c(1:3).
- **Y.pred.idx**: The indices of the predicted response vectors in the solution path to be displayed. The default values are c(1:5).
- **...**: Arguments to be passed to methods.

Details

predict.sqrtlasso produces predicted values of the responses of the newdata from the estimated beta values in the object, i.e.

\[\hat{Y} = \hat{\beta}_0 + X_{new}\hat{\beta}. \]

Value

- **Y.pred**: The predicted response vectors based on the estimated models.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao

Maintainer: Jason Ge <jiange@princeton.edu>

See Also

- picasso
- picasso-package
print.gaussian

Description

Print a summary of the information about an object with S3 class "gaussian".

Usage

S3 method for class 'gaussian'
print(x, ...)

Arguments

x
An object with S3 class "gaussian".

...
Arguments to be passed to methods.

Details

This call simply outlines the options used for computing a lasso object.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

picasso and picasso-package.

print.logit

Description

Print a summary of the information about an object with S3 class "logit".

Usage

S3 method for class 'logit'
print(x, ...)

Arguments

x
An object with S3 class "logit".

...
Arguments to be passed to methods.
print.poisson

Details

This call simply outlines the options used for computing a logit object.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

picasso and picasso-package.

print.poisson: Print Function for an object with S3 class poisson

Description

Print a summary of the information about an object with S3 class "poisson".

Usage

S3 method for class 'poisson'
print(x, ...)

Arguments

x An object with S3 class "poisson".
...
Arguments to be passed to methods.

Details

This call simply outlines the options used for computing a sparse poisson regression object.

Author(s)

Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also

picasso and picasso-package.
print.sqrtlasso

Print Function for an object with S3 class "sqrtlasso"

Description
Print a summary of the information about an object with S3 class "sqrtlasso".

Usage
S3 method for class 'sqrtlasso'
print(x, ...)

Arguments
x An object with S3 class "sqrtlasso".
... Arguments to be passed to methods.

Details
This call simply outlines the options used for computing a lasso object.

Author(s)
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <jiange@princeton.edu>

See Also
picasso and picasso-package.
Index

c coef.gaussian, 3
c coef.logit, 3
c coef.poisson, 4
c coef.sqrtlasso, 5

eyedata, 5

p picasso, 2–5, 6, 12–20
picasso-package, 2
plot.gaussian, 11
plot.logit, 12
plot.poisson, 13
plot.sqrtlasso, 13
predict.gaussian, 14
predict.logit, 15
predict.poisson, 16
predict.sqrtlasso, 17
print.gaussian, 18
print.logit, 18
print.poisson, 19
print.sqrtlasso, 20