Package ‘survidm’

June 25, 2021

Type Package

Title Inference and Prediction in an Illness-Death Model

Version 1.3.2

Date 2021-06-23

Author Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho

Maintainer Marta Sestelo <sestelo@uvigo.es>

Description Newly developed methods for the estimation of several probabilities in an illness-death model. The package can be used to obtain nonparametric and semiparametric estimates for: transition probabilities, occupation probabilities, cumulative incidence function and the sojourn time distributions. Additionally, it is possible to fit proportional hazards regression models in each transition of the Illness-Death Model. Several auxiliary functions are also provided which can be used for marginal estimation of the survival functions.

Depends R (>= 3.0.0)

Encoding UTF-8

License GPL-3

LazyData true

Imports KernSmooth, np, survival, doParallel, parallel, doRNG, foreach, TPmsm, Rcpp, ggplot2, gridExtra, plotly

RoxygenNote 7.1.1

LinkingTo Rcpp

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-06-24 23:20:02 UTC

R topics documented:

survidm-package ... 2
autoplot.survIDM ... 3
survidm-package

Description

Newly developed methods for the estimation of several probabilities in an illness-death model. The package can be used to obtain nonparametric and semiparametric estimates for: transition probabilities, occupation probabilities, cumulative incidence function and the sojourn time distributions. Additionally, it is possible to fit proportional hazards regression models in each transition of the Illness-Death Model. Several auxiliary functions are also provided which can be used for marginal estimation of the survival functions.

Author(s)

Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.
Maintainer: Marta Sestelo, sestelo@uvigo.es

References

autoplot.survIDM

Visualization of objects of class survIDM with ggplot2 graphics.

Description

It draws the estimated probabilities.

Usage

```r
## S3 method for class 'survIDM'
autoplot(
  object = object,
  y = NULL,
  trans = "all",
  func = "distribution",
  conf = NULL,
  type = NULL,
  conftype = NULL,
  col = 1:6,
  confcol = 1:6,
  lty = 1,
  conflty = 2,
  xlab = "Time",
  ylab = NULL,
  ylim = NULL,
  xlim = NULL,
  interactive = FALSE,
  ...
)
```

Arguments

- `object` Object of survIDM class.
- `y` NULL
- `trans` The transition probabilities plotted. It is used only when the object is of class "AJ", "LIDA" "LM", "PLM", "LMAJ", "PLMAJ", "PAJ" and "tpIPCW". Possible options are "all" (default), "00", "01", "02", "11" or "12".
- `func` It is used only when the object is of class "soj" or "sojIPCW". The type of curve to be drawn ("distribution" or "survival"). Default to "distribution".
autoplot.survIDM

conf
Draw the confidence intervals into the plot. By default it is NULL, they are drawn if the "surv" object contains them.

type
The type of plot that should be drawn. See details par for possible options. Defaults to "s" for the draw be stair steps.

conftype
The type of plot that should be drawn for confidence intervals. See details par for possible options. Defaults to "s" for the draw be stair steps.

col
Vector of colors. Colors are used cyclically.

confcol
Vector of colors for the confidence intervals. Colors are used cyclically.

lty
The line type. Line types can either be specified as an integer (0 = blank, 1 = solid (default), 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash). See details in par.

conflty
The line type for confidence intervals. Line types can either be specified as an integer (0 = blank, 1 = solid (default), 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash).

xlab
A title for the x axis: see title.

ylab
A title for the y axis: see title.

ylim
The y limits of the plot.

xlim
The x limits of the plot.

interactive
Logical flag indicating if an interactive plot with plotly is produced.

... Other options.

Value
A ggplot object, so you can use common features from ggplot2 package to manipulate the plot.

Author(s)
Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

Examples

```r
res <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 0, method = "AJ", conf = FALSE, data = colonIDM)
autoplot(res)
autoplot(res, trans = "02")

res1 <- tprob(survIDM(time1, event1, Stime, event) ~ factor(sex), s = 365, method = "AJ", conf = FALSE, data = colonIDM)
autoplot(res1, trans="02", ylim=c(0,0.5))

res2 <- CIF(survIDM(time1, event1, Stime, event) ~ age, data = colonIDM, z.value = 56, conf = FALSE)
autoplot(res2)
```
res3 <- sojourn(time1, event1, Stime, event) ~ factor(sex),
 data = colonIDM, conf = FALSE, conf.level = 0.95)

autoplot(res3)

Beran

Estimation of the conditional distribution function of the response, given the covariate under random censoring.

Description

Computes the conditional survival probability \(P(T > y | Z = z) \)

Usage

```
Beran(time, status, covariate, delta, x, y, kernel = "gaussian", bw, lower.tail = FALSE)
```

Arguments

- `time` The survival time of the process.
- `status` Censoring indicator of the total time of the process; 0 if the total time is censored and 1 otherwise.
- `covariate` Covariate values for obtaining estimates for the conditional probabilities.
- `delta` Censoring indicator of the covariate.
- `x` The first time (or covariate value) for obtaining estimates for the conditional probabilities. If missing, 0 will be used.
- `y` The total time for obtaining estimates for the conditional probabilities.
- `kernel` A character string specifying the desired kernel. See details below for possible options. Defaults to "gaussian" where the gaussian density kernel will be used.
- `bw` A single numeric value to compute a kernel density bandwidth.
- `lower.tail` logical; if FALSE (default), probabilities are \(P(T > y | Z = z) \) otherwise, \(P(T <= y | Z = z) \).

Details

Possible options for argument `window` are "gaussian", "epanechnikov", "tricube", "boxcar", "triangular", "quartic" or "cosine".

Author(s)

Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho
References

Examples

```r
obj <- with(colonIDM, survIDM(time1, event1, Stime, event))
obj0 <- obj

#P(T>y|age=45)
library(KernSmooth)
h <- dpik(colonIDM$age)
Beran(time = obj0$Stime, status = obj0$event, covariate = colonIDM$age, x = 45, y = 730, bw = h)

#P(T<=y|age=45)
Beran(time = obj0$Stime, status = obj0$event, covariate = colonIDM$age, x = 45, y = 730, bw = h, lower.tail = TRUE)
```

bladderIDM

Bladder Cancer Recurrences.

Description

bladderIDM is a data frame with 8 variables and 85 observations. Data on recurrences of bladder cancer, used by many people to demonstrate methodology for recurrent event modelling.

Usage

data("bladderIDM")

Format

A data frame with 85 observations on the following 8 variables. Below a brief description is given for some of these variables.

t1 Time to first recurrence/censoring, whichever occurs first.
e1 Recurrence/censoring indicator (first recurrence=1) for the first time (t1).
t2 Time to second recurrence/censoring, whichever occurs first.
e2 Recurrence/censoring indicator (second recurrence=1) for the second time (t2)
t3 Time to recurrence/censoring, whichever occurs first.
e3 Recurrence/censoring indicator (third recurrence=1) for the third time (t3)
t4 Time to fourth recurrence/censoring, whichever occurs first.
e4 Recurrence/censoring indicator (fourth recurrence=1) for the fourth time (t4)
References

Examples

data(bladderIDM)
head(bladderIDM)

Nonparametric estimation of the Cumulative Incident Functions in the illness-death model

Description

This function is used to obtain nonparametric estimates of the cumulative incidence probabilities in the illness-death model. They represent the probability of one individual’s being or having been in state j at time t.

Usage

CIF(
 formula,
 s,
 data,
 conf = FALSE,
 n.boot = 199,
 conf.level = 0.95,
 z.value,
 bw = "dpik",
 window = "gaussian",
 method.weights = "NW",
 cluster = FALSE,
 ncores = NULL,
 presmooth = FALSE
)

Arguments

formula A formula object, which must have a survIDM object as the response on the left of the ~ operator and, if desired, a term on the right. The term may be a qualitative or quantitative variable. Without covariates, the right hand side should be ~ 1.

s The first time for obtaining estimates for the cumulative incidence functions. If missing, 0 will be used.
data A data.frame including at least four columns named `time1`, `event1`, `Stime` and `event`, which correspond to disease free survival time, disease free survival indicator, time to death or censoring, and death indicator, respectively.

conf Provides pointwise confidence bands. Defaults to FALSE.

n.boot The number of bootstrap replicates to compute the variance of the estimator. Default is 199.

conf.level Level of confidence. Defaults to 0.95 (corresponding to 95%).

z.value The value of the covariate on the right hand side of formula at which the cumulative incidence probabilities are computed. For quantitative covariates, i.e. of class integer and numeric.

bw A single numeric value to compute a kernel density bandwidth. Use "dpik" for the KernSmooth package based selector or "np" for the 'npudensbw' function of the np package.

window A character string specifying the desired kernel. See details below for possible options. Defaults to "gaussian" where the gaussian density kernel will be used.

method.weights A character string specifying the desired weights method. Possible options are "NW" for the Nadaraya-Watson weights and "LL" for local linear weights. Defaults to "NW".

cluster A logical value. If TRUE (default), the bootstrap procedure for the confidence intervals is parallelized. Note that there are cases (e.g., a low number of bootstrap repetitions) that R will gain in performance through serial computation. R takes time to distribute tasks across the processors also it will need time for binding them all together later on. Therefore, if the time for distributing and gathering pieces together is greater than the time need for single-thread computing, it does not worth parallelize.

ncores An integer value specifying the number of cores to be used in the parallelized procedure. If NULL (default), the number of cores to be used is equal to the number of cores of the machine - 1.

presmooth A logical value. If TRUE, the presmoothed landmark estimator of the cumulative incidence function is computed.

Details

Possible options for argument window are "gaussian", "epanechnikov", "tricube", "boxcar", "triangular", "quartic" or "cosine".

Value

An object of class "survIDM" and one of the following two classes: "CIF" (Cumulative Incidence Function), and "cifIPCW" (Inverse Probability of Censoring Weighting for the Cumulative Incidence Function). Objects are implemented as a list with elements:

- `est` data.frame with estimates of the cumulative incidence probabilities.
- `CI` data.frame with the confidence intervals of the cumulative incidence probabilities.
- `conf.level` Level of confidence.
The first time for obtaining estimates for the cumulative incidence probabilities.

The time for obtaining the estimates of cumulative incidence probabilities.

logical; if FALSE (default) the pointwise confidence bands are not given.

The expression of the estimated probability.

The number of levels of the covariate. Provides important information when the covariate at the right hand side of formula is of class factor.

The levels of the qualitative covariate (if it is of class factor) on the right hand side of formula.

A formula object.

A call object.

Author(s)

Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

References

Examples

```r
# Cumulative Incidence Function (CIF)
res <- CIF(survIDM(time1, event1, Stime, event) ~ 1, data = colonIDM, conf = FALSE)
res
summary(res, time=365*1:7)
plot(res, ylim=c(0, 0.6))

res01 <- CIF(survIDM(time1, event1, Stime, event) ~ 1, data = colonIDM, conf = FALSE, presmooth = TRUE)
res01
summary(res01, time=365*1:7)
plot(res01, ylim=c(0, 0.6))

# CIF for those in State 1 at time s=365, Y(s)=0
res1 <- CIF(survIDM(time1, event1, Stime, event) ~ 1, data = colonIDM, s = 365, conf = FALSE)
summary(res1, time=365*1:7)
plot(res1, ylim=c(0, 0.6))

# Conditional CIF (with a factor)
res2 <- CIF(survIDM(time1, event1, Stime, event) ~ factor(sex), data = colonIDM, s = 365, conf = FALSE)
```
colonIDM

Chemotherapy for Stage B/C colon cancer.

Description
These are data from one of the first successful trials of adjuvant chemotherapy for colon cancer. Levamisole is a low-toxicity compound previously used to treat worm infestations in animals; 5-FU is a moderately toxic (as these things go) chemotherapy agent.

Usage
data("colonIDM")

Format
A data frame with 929 observations on the following 15 variables. Below a brief description is given for some of these variables.

- **time1** Time to recurrence/censoring/death, whichever occurs first.
- **event1** Recurrence/censoring indicator (recurrence=1, alive=0).
- **Stime** Time to censoring/death, whichever occurs first.
- **event** Death/censoring indicator (death=1, alive=0).
- **rx** Treatment - Observation, Lev(amisole), Lev(amisole)+5-FU.
- **sex** Sex indicator (male=1, female=0).
- **age** Age in years.
- **obstruct** Obstruction of colon by tumour.
- **perfor** Perforation of colon.
- **adhere** Adherence to nearby organs.
- **nodes** Number of lymph nodes with detectable cancer.
differ Differentiation of tumour (1=well, 2=moderate, 3=poor).

extent Extent of local spread (1=submucosa, 2=muscle, 3=serosa, 4=contiguous structures).

surg Time from surgery to registration (0=short, 1=long).

node4 More than 4 positive lymph nodes.

Source

The study is originally described in Laurie (1989). The main report is found in Moertel (1990). This data set is closest to that of the final report in Moertel (1991). A version of the data with less follow-up time was used in the paper by Lin (1994).

References

Examples

```r
data(colonIDM)
head(colonIDM)
```

coxidm

Fit proportional hazards regression model in each transition of the Illness-Death Model.

Description

Fits a Cox proportional hazards regression model for each transition.

Usage

```r
coxidm(formula, data, semiMarkov = FALSE)
```
Arguments

formula
A formula object, which must have a `survIDM` object as the response on the left of the `~` operator and, if desired, a term on the right. The term may be a qualitative or quantitative variable. Without covariates, the right hand side should be `~ 1`.

data
A data.frame including at least four columns named `time1`, `event1`, `Stime` and `event`, which correspond to disease free survival time, disease free survival indicator, time to death or censoring, and death indicator, respectively.

semiMarkov
By default, `FALSE`.

Value

A data frame or a list containing the following components:

- **coef**
 Estimated coefficients.
- **exp(coef)**
 Exponent of the estimated coefficients.
- **lower 0.95**
 Lower limit of the confidence interval.
- **upper 0.95**
 Upper limit of the confidence interval.
- **pvalue**
 Obtained pvalue testing that the coefficient is equals to zero.

Other data frames or lists:

- **anova**
 Analysis of Deviance for the Cox Regression models.
- **zph**
 Test the Proportional Hazards Assumption of the Cox Regression models.
- **term**
 Predicted values of splines and partial residual for the terms of the model.

Author(s)

Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

Examples

```r
  cmm1 <- coxidm(survIDM(time1, event1, Stime, event) ~ age, data = colonIDM)  
  summary(cmm1, conf.level = 0.95)

  cmm2 <- coxidm(survIDM(time1, event1, Stime, event) ~ rx + sex + age + nodes,  
                  data = colonIDM)  
  summary(cmm2)

  cmm3 <- coxidm(survIDM(time1, event1, Stime, event) ~ rx + sex + age + nodes,  
                  data = colonIDM, semiMarkov = TRUE)  
  summary(cmm3)
```
Description

This function provides survival estimates using the product-limit Kaplan-Meier estimator.

Usage

```R
KM(time, status, t)
```

Arguments

- `time`: Survival time of the process.
- `status`: Censoring indicator of the survival time of the process; 0 if the survival time is censored and 1 otherwise.
- `t`: The time for obtaining survival estimates.

Author(s)

Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

References

See Also

`PKM`

Examples

```R
require(survival)
obj <- with(colonIDM, survIDM(time1, event1, Stime, event))
KM(time = obj$Stime, status = obj$event, t = 1095)
fit <- survfit(Surv(obj$Stime, obj$event) ~ 1, data = obj)
summary(fit, time = 1095)$surv
```
KMW

Kaplan-Meier weights

Description

This function returns a vector with the Kaplan-Meier weights.

Usage

KMW(time, status)

Arguments

time
Survival time of the process.

status
Censoring indicator of the survival time of the process; 0 if the survival time is censored and 1 otherwise.

Value

Vector with Kaplan-Meier weights.

Author(s)

Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

References

See Also

PKMW

Examples

obj <- with(colonIDM, survIDM(time1, event1, Stime, event))
kmw <- KMW(time = obj$Stime, status = obj$event)

require(survival)
colon.surv <- survfit(Surv(Stime, event) ~ 1, obj)
times <- summary(colon.surv)$time
surv <- summary(colon.surv)$surv
nevent <- summary(colon.surv)$n.event
p <- match(obj$Stime, times)
kmw2 <- -diff(c(1, surv))/nevent
kmw2 <- kmw2[p]*obj$event
kmw2[is.na(kmw2)] <- 0
all.equal(kmw, kmw2)
LLW

Local linear weights

Description
Computes local linear weights based on Kernel smoothing.

Usage
LLW(x, kernel = "gaussian", bw, t1)

Arguments
- **x**: Covariate values for obtaining estimates for the conditional probabilities. If missing, unconditioned probabilities will be computed.
- **kernel**: A character string specifying the desired kernel. See details below for possible options. Defaults to "gaussian" where the gaussian density kernel will be used.
- **bw**: A single numeric value to compute a kernel density bandwidth.
- **t1**: Covariate value to compute the weight at.

Details
Possible options for argument window are "gaussian", "epanechnikov", "tricube", "boxcar", "triangular", "quartic" or "cosine".

Value
A vector with local linear weights.

Author(s)
Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

See Also
NWW

Examples
LLW(x = colonIDM$age, bw = 3, t1 = 60)
markov.test

This function is used to test the markov assumption in the illness-death model.

Description

The markov assumption may be tested including the sojourn time in the initial state, "times1", and other covariates in the Cox model.

Usage

markov.test(formula, s, nm.method = "LM", data)

Arguments

formula A formula object, which must have a survDM.
s The first time for obtaining a graphical test of markovianity by comparison of the estimates for transition probabilities. If missing, first quartile of the sojourn time in the initial state has been considered for the graphical test.
nm.method The non-markov method used to compute the transition probabilities. Defaults to "LM".
data A data frame including at least four columns named time1, event1, Stime and event, which correspond to disease free survival time, disease free survival indicator, time to death or censoring, and death indicator, respectively.

Details

The markov assumption may be tested including the sojourn time in the initial state, "times1", and other covariates in the Cox model. A graphical test for Markovianity is also available.

Value

cox.markov.test
An object of class coxph representing the fit. See coxph.object for details.

TPestimates
Dataframe with estimates of the transition probabilities for Aalen-Johansen estimator (markovian) and for non-markov estimator. Confidence intervals for the transition probability from State 1 to State 2 are also available.
nm.method
The non-markov method used to compute the transition probabilities.
s
The first time for obtaining a graphical test of markovianity by comparison of the estimates for transition probabilities.
call
A call object.

Author(s)

Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.
References

Examples

```r
mk <- markov.test(survIDM(time1,event1,Stime,event)~1, s=365, nm.method = "LM", data=colonIDM)
mk$cox.markov.test
mk$TPestimates
mk$nm.method
plot(mk)
```

nevents

Count number of observed transitions.

Description

Given a dataset of class "survIDM", this function counts the number of observed transitions in the multi-state model.

Usage

```r
nevents(dataidm, state.names=NULL)
```

Arguments

- `dataidm`: A dataframe including at least four columns named `time1`, `event1`, `Stime` and `event`, which correspond to disease free survival time, disease free survival indicator, time to death or censoring, and death indicator, respectively.
- `state.names`: Names for the transition states. If NULL (default), transition states are named by "healthy", "illness" and "death".

Details

The columns of the dataset needs to have the format of class "survIDM", which holds the transition matrix of the multi-state model. The arguments `time1` and `Stime` must be numeric and nonnegative; `event1` and `event` must be 0 or 1 if numeric and TRUE or FALSE if logical. `Stime` must be greater or equal to argument arguments `time1`. `Stime` and `time1` must be equal when argument `event1` equals 0 or FALSE. Argument `event` must be equal to 0 or FALSE when argument `event1` equals 0 or FALSE. When arguments `Stime` and `time1` are equal and argument `event1` equals 1 or TRUE, argument `event` must be equal to 1 or TRUE.
Author(s)
Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

References

Examples

```r
nevents(colonIDM)
nevents(colonIDM, c('State0', 'State1', 'State2'))
```

Description
Computes the Nadaraya-Watson weights.

Usage

```r
NWW(covariate, x, kernel = "gaussian", bw)
```

Arguments

covariate Covariate values for obtaining weights.
x Covariate value to compute the weight at.
kernel A character string specifying the desired kernel. See details below for possible options. Defaults to "gaussian" where the gaussian density kernel will be used.
bw A single numeric value to compute a kernel density bandwidth.

Details
Possible options for argument window are "gaussian", "epanechnikov", "tricube", "boxcar", "triangular", "quartic" or "cosine".

Value
A vector with Nadaraya-Watson weights.
Author(s)
Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

See Also
LLW

Examples
NWW(covariate = colonID$age, x=40, kernel = "gaussian", bw = 3)

PKM Presmoothed Kaplan-Meier product-limit estimate of survival

Description
This function provides survival estimates using the presmoothed product-limit Kaplan-Meier estimator.

Usage
PKM(time, status, t)

Arguments
time Survival time of the process.
status Censoring indicator of the survival time of the process; 0 if the survival time is censored and 1 otherwise.
t The time for obtaining survival estimates.

Author(s)
Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

References

See Also
KM
PKMW

Presmoothed Kaplan-Meier weights

Description

This function returns a vector with the presmoothed Kaplan-Meier weights.

Usage

PKMW(time, status)

Arguments

time Survival time of the process.
status Censoring indicator of the survival time of the process; 0 if the survival time is censored and 1 otherwise.

Value

Vector with presmoothed Kaplan-Meier weights.

Author(s)

Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

References

See Also

KMW

Examples

```r
obj <- with(colonIDM, survIDM(time1, event1, Stime, event))
PKMW(time = obj$Stime, status = obj$event, t = 1095)
```
Description

It draws the estimated probabilities.

Usage

```r
## S3 method for class 'survIDM'
plot(x = object, y = NULL, trans = "all",
     func = "distribution", conf = NULL,
     type = NULL, conftype = NULL, col = 1:6, confcol = 1:6, lty = 1, conflty = 2,
     xlab = "Time (years)", ylab = NULL, ylim = NULL, xlim = NULL, ...)
```

Arguments

- **x**: An object of class "survIDM".
- **y**: NULL
- **trans**: The transition probabilities plotted. It is used only when the object is of class "AJ", "LIDA" "LM", "PLM", "LMAJ", "PLMAJ", "PAJ" and "tpIPCW". Possible options are "all" (default), "00", "01", "02", "11" or "12".
- **func**: It is used only when the object is of class "soj" or "sojIPCW". The type of curve to be drawn ("distribution" or "survival"). Default to "distribution".
- **conf**: Draw the confidence intervals into the plot. By default it is NULL, they are drawn if the "surv" object contains them.
- **type**: The type of plot that should be drawn. See details `par` for possible options. Defaults to "s" for the draw be stair steps.
- **conftype**: The type of plot that should be drawn for confidence intervals. See details `par` for possible options. Defaults to "s" for the draw be stair steps.
- **col**: Vector of colors. Colors are used cyclically.
- **confcol**: Vector of colors for the confidence intervals. Colors are used cyclically.
- **lty**: The line type. Line types can either be specified as an integer (0 = blank, 1 = solid (default), 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash). See details in `par`.
- **conflty**: The line type for confidence intervals. Line types can either be specified as an integer (0 = blank, 1 = solid (default), 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash).
- **xlab**: A title for the x axis: see `title`.
- **ylab**: A title for the y axis: see `title`.
- **ylim**: The y limits of the plot.
- **xlim**: The x limits of the plot.
- **...**: Other options.
sojourn

Nonparametric estimation of the Sojourn time distributions in the recurrence state in the illness-death model

Description

This function is used to obtain nonparametric estimates of the sojourn probabilities in the recurrence state in the illness-death model.

Usage

sojourn(
 formula,
 data,
 conf = FALSE,
 conf.level = 0.95
)
n.boot = 199,
conf.level = 0.95,
z.value,
bw = "dpik",
window = "gaussian",
method.weights = "NW",
method = "LM",
presmooth = FALSE,
cluster = FALSE,
ncores = NULL
)

Arguments

formula A formula object, which must have a survIDM object as the response on the left of the ~ operator and, if desired, a term on the right. The term may be a qualitative or quantitative variable. Without covariates, the right hand side should be ~ 1.
data A data frame including at least four columns named time1, event1, Stime and event, which correspond to disease free survival time, disease free survival indicator, time to death or censoring, and death indicator, respectively.
conf Provides pointwise confidence bands. Defaults to FALSE.
n.boot The number of bootstrap replicates to compute the variance of the non-Markovian estimator. Default is 199.
conf.level Level of confidence. Defaults to 0.95 (corresponding to 95%).
z.value The value of the covariate on the right hand side of formula at which the sojourn probabilities are computed. For quantitative covariates, i.e. of class integer and numeric.
bw A single numeric value to compute a kernel density bandwidth. Use "dpik" for the KernSmooth package based selector or "np" for the 'npudensbw' function of the np package.
window A character string specifying the desired kernel. See details below for possible options. Defaults to "gaussian" where the gaussian density kernel will be used.
method.weights A character string specifying the desired weights method. Possible options are "NW" for the Nadaraya-Watson weights and "LL" for local linear weights. Defaults to "NW".
method The method used to compute the sojourn estimates. Possible options are "LM" and "Satten-Datta". Defaults to "LM".
presmooth - A logical value. If TRUE, the presmoothed landmark estimator of the sojourn function is computed. Only valid for method = "LM".
cluster A logical value. If TRUE (default), the bootstrap procedure for the confidence intervals is parallelized. Note that there are cases (e.g., a low number of bootstrap repetitions) that R will gain in performance through serial computation. R takes time to distribute tasks across the processors also it will need time for binding them all together later on. Therefore, if the time for distributing and gathering
pieces together is greater than the time need for single-thread computing, it does not worth parallelize.

ncores
An integer value specifying the number of cores to be used in the parallelized procedure. If **NULL** (default), the number of cores to be used is equal to the number of cores of the machine - 1.

Details
Possible options for argument window are "gaussian", "epanechnikov", "tricube", "boxcar", "triangular", "quartic" or "cosine".

Value
An object of class "survIDM" and one of the following two classes: "soj" (Sojourn Time Distribution), and "sojIPCW" (Inverse Probability of Censoring Weighting for the Sojourn Time Distribution). Objects are implemented as a list with elements:

- **est** data.frame with estimates of the sojourn probabilities.
- **CI** data.frame with the confidence intervals of the sojourn probabilities.
- **conf.level** Level of confidence.
- **t** The time for obtaining the estimates of sojourn probabilities.
- **conf** logical; if **FALSE** (default) the pointwise confidence bands are not given.
- **callp** The expression of the estimated probability.
- **Nlevels** The number of levels of the covariate. Provides important information when the covariate at the right hand side of formula is of class factor.
- **levels** The levels of the qualitative covariate (if it is of class factor) on the right hand side of formula.
- **formula** A formula object.
- **call** A call object.

Author(s)
Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

References

Examples
```r
res <- sojourn(survIDM(time1, event1, Stime, event) ~ 1, data = colonIDM, conf = FALSE, conf.level = 0.95)
res
summary(res, time=365*1:6)
```
plot(res)
res1 <- sojourn(survIDM(time1, event1, Stime, event) ~ 1,
data = colonIDM, conf = FALSE, conf.level = 0.95, method = "LM",
presmooth = TRUE)
res1
summary(res1, time=365*1:6)
plot(res1)

not run:
#res2 <- sojourn(survIDM(time1, event1, Stime, event) ~ 1,
#data = colonIDM, conf = FALSE, conf.level = 0.95, method = "Satten-Datta")
#res2

with a factor
res3 <- sojourn(survIDM(time1, event1, Stime, event) ~ factor(sex),
data = colonIDM, conf = FALSE, conf.level = 0.95)
res3
summary(res3, time=365*1:6)
plot(res3)

with a qualitative covariate
res4 <- sojourn(survIDM(time1, event1, Stime, event) ~ age, data = colonIDM,
z.value = 56, conf = FALSE, conf.level = 0.95)
res4
summary(res4, time=365*1:6)
plot(res4)

summary.cmm

Summarizing fits of cmm class

Description

Produces a summary of a fitted coxidm model (proportional hazards regression model in each transition of the Illness-Death Model.

Usage

S3 method for class 'cmm'
summary(object, type=NULL, conf.level = 0.95, ...)

Arguments

object A fitted cmm object as produced by coxidm().
type Type of summary of the Cox model. Default value is "NULL" that produces a summary of a fitted coxidm model. Possible choices are "anova" and "ph". The "anova" option provides the Analysis of Deviance of the regression model. The "ph" option computes the tests of the proportional hazards assumption of the Cox Regression models.

cnf.level Level for computation of the confidence intervals. If set to FALSE no confidence intervals are printed.

Value
A data frame or a list containing the following components:

coef Estimated coefficients.
exp(coef) Exponent of the estimated coefficients.
lower 0.95 Lower limit of the confidence interval.
upper 0.95 Upper limit of the confidence interval.
pvalue obtained pvalue testing that the coefficient is equals to zero.

Other data frames with the Analysis of Deviance or the tests of the Proportional Hazards Assumption of the Cox Regression models.

Author(s)
Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

Examples

```r
cmm1 <- coxidm(survIDM(time1, event1, Stime, event) ~ age, data = colonIDM)
summary(cmm1, conf.level = 0.95)

cmm2 <- coxidm(survIDM(time1, event1, Stime, event) ~ rx + sex + age + nodes, 
               data = colonIDM)
summary(cmm2)

summary(cmm2,type = 'anova')

cmm3 <- coxidm(survIDM(time1, event1, Stime, event) ~ rx + sex + age + nodes, 
                data = colonIDM, semiMarkov = TRUE)
summary(cmm3)

cmm4 <- coxidm(survIDM(time1, event1, Stime, event) ~ rx + sex + age + 
                pspline(nodes) + surg + adhere, data = colonIDM)
summary(cmm4, type = 'ph')
```
summary.survIDM

Summarizing fits of survIDM class

Description

Returns a data.frame or list containing the estimates of the probabilities, its confidence limits and other information.

Usage

```r
## S3 method for class 'survIDM'
summary(object, times = NULL, ...)
```

Arguments

- `object`: A fitted survIDM object as produced by `tprob()`, `CIF()` or `sojourn()`.
- `times`: Vector of times; the returned data frame will contain 1 row for each time. Missing values are not allowed.
- `...`: For future methods.

Value

A data frame or a list containing the following components:

- `y`: The total time for obtaining the estimates of the probabilities.
- `est`: Estimates of the probability.
- `lower 95% CI`: The lower probabilities of the interval.
- `upper 95% CI`: The upper probabilities of the interval.

Author(s)

Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

Examples

```r
fit <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,
             method = "AJ", conf = TRUE, conf.level = 0.95,
             conf.type = "linear", n.boot = 50, data = colonIDM)

summary(fit)
summary(fit, times = c(400, 1000, 2900))
```
Create a `survIDM` object

Description

Creates a "survIDM" object, usually used as a response variable in a model formula.

Usage

```r
survIDM(time1, event1, Stime, event, 
```

Arguments

- `time1` First time or censoring time.
- `event1` Indicator of the first time; 0 if the first time is censored and 1 otherwise.
- `Stime` The total time of the process.
- `event` Censoring indicator of the survival time of the process; 0 if the total time is censored and 1 otherwise.
- `...` Other options.

Details

Arguments in this function must be introduced in the following order: `time1`, `event1`, `Stime` and `event`, where `time1` and `Stime` are the sojourn time in the initial state and the total time, respectively. `event1` and `event` denote their corresponding indicator statuses. This function checks the following conditions: (i) the arguments `time1` and `Stime` must be numeric and nonnegative; `event1` and `event` must be 0 or 1 if numeric and TRUE or FALSE if logical. `Stime` must be greater or equal to argument arguments `time1`. `Stime` and `time1` must be equal when argument `event1` equals 0 or FALSE. Argument `event` must be equal to 0 or FALSE when argument `event1` equals 0 or FALSE. When arguments `Stime` and `time1` are equal and argument `event1` equals 1 or TRUE, argument `event` must be equal to 1 or TRUE.

Value

An object of class "survIDM". "survIDM" objects are implemented as a single dataframe.

Author(s)

Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

Examples

```r
with(colonIDM, survIDM(time1, event1, Stime, event))
```
tprob

Nonparametric estimation of transition probabilities in the illness-death model

Description

This function is used to obtain nonparametric estimates of the transition probabilities in the illness-death model.

Usage

tprob(
 formula,
 s,
 method = "AJ",
 conf = FALSE,
 conf.level = 0.95,
 conf.type = "log",
 n.boot = 199,
 data,
 z.value,
 bw = "dpik",
 window = "gaussian",
 method.weights = "NW",
 cluster = FALSE,
 ncores = NULL,
 na.rm = TRUE
)

Arguments

formula A formula object, which must have a survIDM object as the response on the left of the ~ operator and, if desired, a term on the right. The term may be a qualititative or quantitative variable. Without covariates, the right hand side should be ~ 1.

s The first time for obtaining estimates for the transition probabilities. If missing, 0 will be used.

method The method used to compute the transition probabilities. Possible options are "AJ", "LIDA" "LM", "PLM", "LMAJ", "PLMAJ", "PAJ", "IPCW" and "breslow". Defaults to "AJ". The "IPCW" method is recommended to obtain conditional transition probabilities (i.e., with a quantitative term on the right hand side of formula). The "breslow" method is based on a Cox’s regression model (Cox, 1972) fitted marginally to each allowed transition, with the corresponding baseline hazard function estimated by the Breslow’s method (Breslow, 1972).

cnf Provides pointwise confidence bands. Defaults to FALSE.

cnf.level Level of confidence. Defaults to 0.95 (corresponding to 95%).
conf.type Method to compute the confidence intervals. Depends on the choice of the estimation method of the transition probabilities. For Aalen-Johansen type estimators ("AJ", "LMAJ", "PAJ" and "PLMAJ") possible choices are "linear", "log" and "log-log". Default method is "log". The "linear" option provides the standard intervals curve +/-k *se(curve), where k is determined from "conf.int". The "log" option calculates the intervals based on the cumulative hazard or -log(survival). The "log-log" option uses the log hazard function or log(-log(survival)). For the remaining estimation methods ("LIDA", "LM", "PLM", "IPCW" and "breslow") the percentile bootstrap which resamples each datum with probability 1/n is used.

n.boot The number of bootstrap replicates to compute the variance of the non-Markovian estimator. Default is 199.

data A data.frame including at least four columns named time1, event1, Stime and event, which correspond to disease free survival time, disease free survival indicator, time to death or censoring, and death indicator, respectively.

z.value The value of the covariate on the right hand side of formula at which the transition probabilities are computed. For quantitative covariates, i.e. of class integer and numeric.

bw A single numeric value to compute a kernel density bandwidth. Use "dpik" for the KernSmooth package based selector or "np" for the 'npudensbw' function of the np package.

window A character string specifying the desired kernel. See details below for possible options. Defaults to "gaussian" where the gaussian density kernel will be used.

method.weights A character string specifying the desired weights method. Possible options are "NW" for the Nadaraya-Watson weights and "LL" for local linear weights. Defaults to "NW".

cluster A logical value. If TRUE (default), the bootstrap procedure for the confidence intervals is parallelized. Note that there are cases (e.g., a low number of bootstrap repetitions) that R will gain in performance through serial computation. R takes time to distribute tasks across the processors also it will need time for binding them all together later on. Therefore, if the time for distributing and gathering pieces together is greater than the time need for single-thread computing, it does not worth parallelize.

ncore An integer value specifying the number of cores to be used in the parallelized procedure. If NULL (default), the number of cores to be used is equal to the number of cores of the machine - 1.

na.rm A logical value indicating whether NA values should be stripped in the computation.

Details

Possible options for argument window are "gaussian", "epanechnikov", "tricube", "boxcar", "triangular", "quartic" or "cosine". The LIDA estimator was labelled according to the acronym of the Lifetime Data Analysis journal in which the estimator was described for the first time (Meira-Machado, U?a-Ivarez and Cadarso-Su?rez, 2006).

Possible methods are:
• AJ Aalen-Johansen estimator
• PAJ Presmoothed Aalen-Johansen estimator
• LIDA LIDA estimator
• LM Landmark approach estimator
• PLM Presmoothed Landmark approach estimator
• LMAJ Landmark approach Aalen-Johansen estimator
• PLDAJ Presmoothed Landmark approach Aalen-Johansen estimator
• tpIPCW Inverse Probability of Censoring Weighting for Transition Probabilities
• tpBreslow Breslow method

Value

An object of class "survIDM" and one of the following five classes: "AJ", "LIDA", "LM", "PLM", "LMAJ", "PLMAJ", "PAJ", "tpIPCW" and "tpBreslow". Objects are implemented as a list with elements:

est data.frame with estimates of the transition probabilities.
CI data.frame with the confidence intervals of the transition probabilities.
conf.level Level of confidence.
s The first time for obtaining estimates for the transition probabilities.
t The time for obtaining the estimates of transition probabilities.
conf logical; if FALSE (default) the pointwise confidence bands are not given.
conf.type Type of the confidence interval.
callp The expression of the estimated probability.
Nlevels The number of levels of the covariate. Provides important information when the
covariate at the right hand side of formula is of class factor.
levels The levels of the qualitative covariate (if it is of class factor) on the right hand
side of formula.
formula A formula object.
call A call object.

Author(s)

Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.

References

Examples

```r
## Not run:
# Aalen-Johansen
res <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 0,
method = "AJ", conf = FALSE, data = colonIDM)
summary(res, time=365*1:6)
plot(res)
# Transition Probabilities Pij(t)=Pij(365,t)
# LIDA
res1 <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,
method = "LIDA", conf = FALSE, data = colonIDM)
summary(res1, time=365*1:6)
plot(res1)
plot(res1, trans="01", ylim=c(0,0.15))
# Landmark (LM)
res2 <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,
method = "LM", conf = FALSE, data = colonIDM)
summary(res2, time=365*1:6)
plot(res2)
# Presmoothed LM
res3 <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,
method = "PLM", conf = TRUE, data = colonIDM)
summary(res3, time=365*1:6)
autoplot(res3, interactive = TRUE)
# Conditional transition probabilities
# With factor
res4 <- tprob(survIDM(time1, event1, Stime, event) ~ factor(sex), s = 365,
method = "AJ", conf = TRUE, data = colonIDM)
summary(res4, time=365*1:6)
plot(res4, trans="02", ylim=c(0,0.5))
res5 <- tprob(survIDM(time1, event1, Stime, event) ~ rx, s =365,
method = "breslow", z.value="Lev", conf = TRUE, data =colonIDM)
summary(res5, time=365*1:6)
plot(res5,trans="02", ylim=c(0,0.5))
# with continuous covariate (IPCW and Breslow Method)
res6 <- tprob(survIDM(time1, event1, Stime, event) ~ age, s = 365,
method = "IPCW", z.value = 48, conf = FALSE, data = colonIDM,
bw = "dpik", window = "gaussian", method.weights = "NW")
summary(res6, time=365*1:6)
plot(res6)
res7 <- tprob(survIDM(time1, event1, Stime, event) ~ age, s =365,
method = "breslow", z.value=60, conf = FALSE, data =colonIDM)
summary(res7, time=365*1:6)
autoplot(res7, interactive=TRUE)
res8 <- tprob(survIDM(time1, event1, Stime, event) ~ age, s =365,
method = "Breslow", z.value=60, conf = FALSE, data = colonIDM)
summary(res8, time=365*1:6)
```
method = "breslow", conf.type='bootstrap', z.value=60, conf = TRUE, data =colonIDM)
summary(res8, time=365*1:6)
plot(res8)
res9 <- tprob(survIDM(time1, event1, Stime, event) ~ rx, s =365,
method = "breslow", conf.type='bootstrap', conf = TRUE, data =colonIDM)
summary(res9, time=365*1:6)
plot(res9, trans="02", ylim=c(0,0.5))
more than a covariate (Breslow Method)
res10<- tprob(survIDM(time1, event1, Stime, event) ~ nodes + factor(rx), s =365,
method = "breslow", conf = TRUE, data =colonIDM)
summary(res10,t=365*1:5)
autoplot(res10)
res11<- tprob(survIDM(time1, event1, Stime, event) ~ nodes + factor(rx), s =365,
method = "breslow", z.value=c(10,'Obs'), conf = TRUE, data =colonIDM)
summary(res11,t=365*1:5)
autoplot(res11)
more than a covariate for Non Linear Models (Breslow Method)
res12<- tprob(survIDM(time1, event1, Stime, event) ~ pspline(age)+ nodes + factor(rx), s =365,
method = "breslow", conf = TRUE, data =colonIDM)
summary(res12,t=365*1:5)
autoplot(res12)
Confidence intervals
res13 <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,
method = "AJ", conf = TRUE, n.boot = 5, conf.level = 0.95,
conf.type = "log", data = colonIDM)
summary(res13, time=365*1:7)
autoplot(res13)

End(Not run)
Index

* datasets
 bladderIDM, 6
 colonIDM, 10

autoplot (autoplot.survIDM), 3
autoplot.survIDM, 3

Beran, 5
bladderIDM, 6

CIF, 7
colonIDM, 10
coxidm, 11

KM, 13, 19
KMW, 14, 20

LLW, 15, 19

markov.test, 16

nevents, 17
NWW, 15, 18

par, 4, 21
PKM, 13, 19
PKMW, 14, 20
plot.survIDM, 21
print.cmm (summary.cmm), 25
print.survIDM (summary.survIDM), 27

sojourn, 22
summary.cmm, 25
summary.survIDM, 27
survIDM, 28
survidm (survidm-package), 2
survidm-package, 2

title, 4, 21
tprob, 29